diff --git a/Scattering and Shit.lyx b/Scattering and Shit.lyx index ec24821..f4010cb 100644 --- a/Scattering and Shit.lyx +++ b/Scattering and Shit.lyx @@ -108,18 +108,82 @@ Zillion conventions for spherical vector waves Legendre polynomials and spherical harmonics: messy from the very beginning \end_layout -\begin_layout Subsection -Kristensson +\begin_layout Standard +\begin_inset Marginal +status open + +\begin_layout Plain Layout +FIXME check the Condon-Shortley phases. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Associated Legendre polynomial of degree +\begin_inset Formula $l\ge0$ +\end_inset + + and order +\begin_inset Formula $m,$ +\end_inset + + +\begin_inset Formula $l\ge m\ge-l$ +\end_inset + +, is given by the recursive relation +\begin_inset Formula +\[ +P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{Condon-Shortley phase}}\frac{1}{2^{l}l!}\left(1-x^{2}\right)^{m/2}\frac{\ud^{l+m}}{\ud x^{l+m}}\left(x^{2}-1\right)^{l}. +\] + +\end_inset + +There is a relation between the positive and negative orders, \end_layout \begin_layout Standard \begin_inset Formula \[ -P_{l}^{-m}=\left(-1\right)^{m}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0 +P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{C.-S. p.}}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0. \] \end_inset +The index +\begin_inset Formula $l$ +\end_inset + + (in certain notations, it is often +\begin_inset Formula $n$ +\end_inset + +) is called +\emph on +degree +\emph default +, index +\begin_inset Formula $m$ +\end_inset + + is the +\emph on +order +\emph default +. + These two terms are then transitively used for all the object which build + on the associated Legendre polynomials, i.e. + spherical harmonics, vector spherical harmonics, spherical waves etc. +\end_layout + +\begin_layout Subsection +Kristensson +\end_layout + +\begin_layout Standard Kristensson uses the Condon-Shortley phase, so (sect. [K]D.2) \end_layout @@ -528,10 +592,11 @@ In this section I summarize the formulae for power \begin_inset Formula $E_{0}$ \end_inset -, this can be used to calculate the absorption cross section, +, this can be used to calculate the absorption cross section (TODO check + if it should be multiplied by the 2), \begin_inset Formula \[ -\sigma_{\mathrm{abs}}=-\frac{P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}. +\sigma_{\mathrm{abs}}=-\frac{2P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}. \] \end_inset @@ -576,7 +641,18 @@ Here The radiated power is then (2.28): \begin_inset Formula \[ -P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right) +P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right). +\] + +\end_inset + +The first term is obviously the power radiated away by the outgoing waves. + The second term must then be minus the power sucked by the scatterer from + the exciting wave. + If the exciting wave is plane, it gives us the extinction cross section +\begin_inset Formula +\[ +\sigma_{\mathrm{tot}}=-\frac{\sum_{n}\Re\left(f_{n}a_{n}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}} \] \end_inset @@ -656,7 +732,15 @@ reference "eq:power-Kristensson-E" The radiated power is then \begin_inset Formula \[ -P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right). +P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}\eta}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right). +\] + +\end_inset + +If the exciting wave is a plane wave, the extinction cross section is +\begin_inset Formula +\[ +\sigma_{\mathrm{tot}}=\frac{\Re\left(a_{mn}p_{mn}^{*}\right)+\Re\left(b_{mn}q_{mn}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}} \] \end_inset @@ -689,15 +773,166 @@ Near field limit \end_layout \begin_layout Chapter -Mie Theory +Single particle scattering and Mie theory +\end_layout + +\begin_layout Standard +The basic idea is simple. + For an exciting spherical wave (usually the regular wave in whatever convention +) of a given frequency +\begin_inset Formula $\omega$ +\end_inset + +, type +\begin_inset Formula $\zeta$ +\end_inset + + (electric or magnetic), degree +\begin_inset Formula $l$ +\end_inset + + and order +\begin_inset Formula $m$ +\end_inset + +, the particle responds with waves from the complementary set (e.g. + outgoing waves), with the same frequency +\begin_inset Formula $\omega$ +\end_inset + +, but any type +\begin_inset Formula $\zeta'$ +\end_inset + +, degree +\begin_inset Formula $l'$ +\end_inset + + and order +\begin_inset Formula $m'$ +\end_inset + +, in a way that the Maxwell's equations are satisfied, with the coefficients + +\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)$ +\end_inset + +. + This yields one row in the scattering matrix (often called the +\begin_inset Formula $T$ +\end_inset + +-matrix) +\begin_inset Formula $T(\omega)$ +\end_inset + +, which fully characterizes the scattering properties of the particle (in + the linear regime, of course). + Analytical expression for the matrix is known for spherical scatterer, + otherwise it is computed numerically (using DDA, BEM or whatever). + So if we have the two sets of spherical wave functions +\begin_inset Formula $\vect f_{lm}^{J_{1},\zeta}$ +\end_inset + +, +\begin_inset Formula $\vect f_{lm}^{J_{2},\zeta}$ +\end_inset + + and the full +\begin_inset Quotes sld +\end_inset + +exciting +\begin_inset Quotes srd +\end_inset + + wave has electric field given as +\begin_inset Formula +\[ +\vect E_{\mathrm{ext}}=\sum_{\zeta=\mathrm{E,M}}\sum_{l,m}c_{lm}^{\zeta}\vect f_{lm}^{\zeta}, +\] + +\end_inset + +the +\begin_inset Quotes sld +\end_inset + +scattered +\begin_inset Quotes srd +\end_inset + + field will be +\begin_inset Formula +\[ +\vect E_{\mathrm{scat}}=\sum_{\zeta',l',m'}\sum_{\zeta,l,m}T_{l',m';l,m}^{\zeta',\zeta}c_{lm}^{\zeta}\vect f_{l'm'}^{\zeta'}, +\] + +\end_inset + +and the total field around the scaterer is +\begin_inset Formula $\vect E=\vect E_{\mathrm{ext}}+\vect E_{\mathrm{scat}}$ +\end_inset + +. \end_layout \begin_layout Section -Full version +Mie theory – full version +\end_layout + +\begin_layout Standard +\begin_inset Formula $T$ +\end_inset + +-matrix for a spherical particle is type-, degree- and order- diagonal, + that is, +\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)=0$ +\end_inset + + if +\begin_inset Formula $l\ne l'$ +\end_inset + +, +\begin_inset Formula $m\ne m'$ +\end_inset + + or +\begin_inset Formula $\zeta\ne\zeta'$ +\end_inset + +. + Moreover, it does not depend on +\begin_inset Formula $m$ +\end_inset + +, so +\begin_inset Formula +\[ +T_{l',m';l,m}^{\zeta',\zeta}(\omega)=T_{l}^{\zeta}\left(\omega\right)\delta_{\zeta'\zeta}\delta_{l'l}\delta_{m'm} +\] + +\end_inset + +where for the usual choice +\begin_inset Formula $J_{1}=1,J_{2}=3$ +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +T_{l}^{E}\left(\omega\right) & = & TODO,\\ +T_{l}^{M}(\omega) & = & TODO. +\end{eqnarray*} + +\end_inset + + \end_layout \begin_layout Section -Long wave approximation +Long wave approximation for spherical nanoparticle \end_layout \begin_layout Standard