Scattering reference – power transport
Former-commit-id: 9e13ded36e422d7bd7bf40352cb89bfa3fee01a6
This commit is contained in:
parent
fe0ccb92b8
commit
377eb5509d
|
@ -108,18 +108,82 @@ Zillion conventions for spherical vector waves
|
||||||
Legendre polynomials and spherical harmonics: messy from the very beginning
|
Legendre polynomials and spherical harmonics: messy from the very beginning
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Standard
|
||||||
Kristensson
|
\begin_inset Marginal
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
FIXME check the Condon-Shortley phases.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Associated Legendre polynomial of degree
|
||||||
|
\begin_inset Formula $l\ge0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and order
|
||||||
|
\begin_inset Formula $m,$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula $l\ge m\ge-l$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, is given by the recursive relation
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{Condon-Shortley phase}}\frac{1}{2^{l}l!}\left(1-x^{2}\right)^{m/2}\frac{\ud^{l+m}}{\ud x^{l+m}}\left(x^{2}-1\right)^{l}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
There is a relation between the positive and negative orders,
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
P_{l}^{-m}=\left(-1\right)^{m}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0
|
P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{C.-S. p.}}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
The index
|
||||||
|
\begin_inset Formula $l$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(in certain notations, it is often
|
||||||
|
\begin_inset Formula $n$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) is called
|
||||||
|
\emph on
|
||||||
|
degree
|
||||||
|
\emph default
|
||||||
|
, index
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the
|
||||||
|
\emph on
|
||||||
|
order
|
||||||
|
\emph default
|
||||||
|
.
|
||||||
|
These two terms are then transitively used for all the object which build
|
||||||
|
on the associated Legendre polynomials, i.e.
|
||||||
|
spherical harmonics, vector spherical harmonics, spherical waves etc.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
Kristensson
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
Kristensson uses the Condon-Shortley phase, so (sect.
|
Kristensson uses the Condon-Shortley phase, so (sect.
|
||||||
[K]D.2)
|
[K]D.2)
|
||||||
\end_layout
|
\end_layout
|
||||||
|
@ -528,10 +592,11 @@ In this section I summarize the formulae for power
|
||||||
\begin_inset Formula $E_{0}$
|
\begin_inset Formula $E_{0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, this can be used to calculate the absorption cross section,
|
, this can be used to calculate the absorption cross section (TODO check
|
||||||
|
if it should be multiplied by the 2),
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\sigma_{\mathrm{abs}}=-\frac{P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
|
\sigma_{\mathrm{abs}}=-\frac{2P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -576,7 +641,18 @@ Here
|
||||||
The radiated power is then (2.28):
|
The radiated power is then (2.28):
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
|
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right).
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The first term is obviously the power radiated away by the outgoing waves.
|
||||||
|
The second term must then be minus the power sucked by the scatterer from
|
||||||
|
the exciting wave.
|
||||||
|
If the exciting wave is plane, it gives us the extinction cross section
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\sigma_{\mathrm{tot}}=-\frac{\sum_{n}\Re\left(f_{n}a_{n}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -656,7 +732,15 @@ reference "eq:power-Kristensson-E"
|
||||||
The radiated power is then
|
The radiated power is then
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
|
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}\eta}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
If the exciting wave is a plane wave, the extinction cross section is
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\sigma_{\mathrm{tot}}=\frac{\Re\left(a_{mn}p_{mn}^{*}\right)+\Re\left(b_{mn}q_{mn}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -689,15 +773,166 @@ Near field limit
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Chapter
|
\begin_layout Chapter
|
||||||
Mie Theory
|
Single particle scattering and Mie theory
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The basic idea is simple.
|
||||||
|
For an exciting spherical wave (usually the regular wave in whatever convention
|
||||||
|
) of a given frequency
|
||||||
|
\begin_inset Formula $\omega$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, type
|
||||||
|
\begin_inset Formula $\zeta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(electric or magnetic), degree
|
||||||
|
\begin_inset Formula $l$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and order
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, the particle responds with waves from the complementary set (e.g.
|
||||||
|
outgoing waves), with the same frequency
|
||||||
|
\begin_inset Formula $\omega$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, but any type
|
||||||
|
\begin_inset Formula $\zeta'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, degree
|
||||||
|
\begin_inset Formula $l'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and order
|
||||||
|
\begin_inset Formula $m'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, in a way that the Maxwell's equations are satisfied, with the coefficients
|
||||||
|
|
||||||
|
\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
This yields one row in the scattering matrix (often called the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix)
|
||||||
|
\begin_inset Formula $T(\omega)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which fully characterizes the scattering properties of the particle (in
|
||||||
|
the linear regime, of course).
|
||||||
|
Analytical expression for the matrix is known for spherical scatterer,
|
||||||
|
otherwise it is computed numerically (using DDA, BEM or whatever).
|
||||||
|
So if we have the two sets of spherical wave functions
|
||||||
|
\begin_inset Formula $\vect f_{lm}^{J_{1},\zeta}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $\vect f_{lm}^{J_{2},\zeta}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and the full
|
||||||
|
\begin_inset Quotes sld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
exciting
|
||||||
|
\begin_inset Quotes srd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
wave has electric field given as
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E_{\mathrm{ext}}=\sum_{\zeta=\mathrm{E,M}}\sum_{l,m}c_{lm}^{\zeta}\vect f_{lm}^{\zeta},
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the
|
||||||
|
\begin_inset Quotes sld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
scattered
|
||||||
|
\begin_inset Quotes srd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
field will be
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E_{\mathrm{scat}}=\sum_{\zeta',l',m'}\sum_{\zeta,l,m}T_{l',m';l,m}^{\zeta',\zeta}c_{lm}^{\zeta}\vect f_{l'm'}^{\zeta'},
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and the total field around the scaterer is
|
||||||
|
\begin_inset Formula $\vect E=\vect E_{\mathrm{ext}}+\vect E_{\mathrm{scat}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Full version
|
Mie theory – full version
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix for a spherical particle is type-, degree- and order- diagonal,
|
||||||
|
that is,
|
||||||
|
\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
if
|
||||||
|
\begin_inset Formula $l\ne l'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $m\ne m'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
or
|
||||||
|
\begin_inset Formula $\zeta\ne\zeta'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Moreover, it does not depend on
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, so
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
T_{l',m';l,m}^{\zeta',\zeta}(\omega)=T_{l}^{\zeta}\left(\omega\right)\delta_{\zeta'\zeta}\delta_{l'l}\delta_{m'm}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where for the usual choice
|
||||||
|
\begin_inset Formula $J_{1}=1,J_{2}=3$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
T_{l}^{E}\left(\omega\right) & = & TODO,\\
|
||||||
|
T_{l}^{M}(\omega) & = & TODO.
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Long wave approximation
|
Long wave approximation for spherical nanoparticle
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
Loading…
Reference in New Issue