xy-periodic lattice scattering support in ScatteringSystem

Gives same results as newbeyn_unitcell 26d6e969


Former-commit-id: 112ab071f41ee556716da67219d859c1dc50ac1d
This commit is contained in:
Marek Nečada 2020-03-06 14:27:59 +02:00
parent 213853e407
commit 3791db2060
6 changed files with 204 additions and 21 deletions

119
misc/infiniterectlat-scatter.py Executable file
View File

@ -0,0 +1,119 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser
ap = ArgParser(['rectlattice2d', 'single_particle', 'single_lMax', 'single_omega'])
ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX'))
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-N", type=int, default="151", help="Number of angles")
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
#ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_m%s_n%g_angles(%g_%g)_Ey_f%geV_L%d_cn%d" % (
particlestr, px*1e9, py*1e9, str(a.material), a.refractive_index, a.kx_lim[0], a.kx_lim[1], a.eV, a.lMax, a.N)
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
import warnings
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle, pgsl_ignore_error
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
eh = eV/hbar
dbgmsg_enable(DebugFlags.INTEGRATION)
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
#Particle positions
orig_x = [0]
orig_y = [0]
orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)
omega = ap.omega
bspec = BaseSpec(lMax = a.lMax)
# The parameters here should probably be changed (needs a better qpms_c.Particle implementation)
pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec)
par = [pp]
ss, ssw = ScatteringSystem.create(par, ap.background_emg, omega, latticebasis = ap.direct_basis)
if ssw.wavenumber.imag != 0:
warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect meaningful results for cross sections.")
wavenumber = ssw.wavenumber.real
sinalpha_list = np.linspace(a.kx_lim[0],a.kx_lim[1],a.N)
# Plane wave data
E_cart_list = np.empty((a.N,3), dtype=complex)
E_cart_list[:,:] = np.array((0,1,0))[None,:]
k_cart_list = np.empty((a.N,3), dtype=float)
k_cart_list[:,0] = sinalpha_list
k_cart_list[:,1] = 0
k_cart_list[:,2] = np.sqrt(1-sinalpha_list**2)
k_cart_list *= wavenumber
σ_ext_list = np.empty((a.N,), dtype=float)
σ_scat_list = np.empty((a.N,), dtype=float)
with pgsl_ignore_error(15): # avoid gsl crashing on underflow
for j in range(a.N):
k_cart = k_cart_list[j]
blochvector = (k_cart[0], k_cart[1], 0)
# the following two could be calculated only once, but probably not a big deal
LU = ssw.scatter_solver(k=blochvector)
ã = ss.planewave_full(k_cart=k_cart, E_cart=E_cart_list[j])
= ssw.apply_Tmatrices_full(ã)
f = LU()
σ_ext_list[j] = -np.vdot(ã, f).real/wavenumber**2
translation_matrix = ssw.translation_matrix_full(blochvector=blochvector) + np.eye(ss.fecv_size)
σ_scat_list[j] = np.vdot(f,np.dot(translation_matrix, f)).real/wavenumber**2
σ_abs_list = σ_ext_list - σ_scat_list
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext_list,σ_abs=σ_abs_list,σ_scat=σ_scat_list, omega=omega, wavenumber=wavenumber, unitcell_area=ss.unitcell_volume
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(sinalpha_list, σ_ext_list*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sinalpha_list, σ_scat_list*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sinalpha_list, σ_abs_list*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\alpha$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
fig.savefig(plotfile)
exit(0)

View File

@ -15,7 +15,7 @@ add_library (qpms SHARED translations.c tmatrices.c vecprint.c vswf.c wigner.c e
ewaldsf.c pointgroups.c latticegens.c ewaldsf.c pointgroups.c latticegens.c
lattices2d.c gaunt.c error.c legendre.c symmetries.c vecprint.c lattices2d.c gaunt.c error.c legendre.c symmetries.c vecprint.c
bessel.c own_zgemm.c parsing.c scatsystem.c materials.c drudeparam_data.c bessel.c own_zgemm.c parsing.c scatsystem.c materials.c drudeparam_data.c
lll.c beyn.c lll.c beyn.c trivialgroup.c
) )
use_c99() use_c99()

View File

@ -91,8 +91,9 @@ class ArgParser:
# Methods to initialise the related data structures: # Methods to initialise the related data structures:
def _eval_background_epsmu(self): # feature: background def _eval_background_epsmu(self): # feature: background
from .cymaterials import EpsMu from .cymaterials import EpsMu, EpsMuGenerator
self.background_epsmu = EpsMu(self.args.refractive_index**2) self.background_epsmu = EpsMu(self.args.refractive_index**2)
self.background_emg = EpsMuGenerator(self.background_epsmu)
def _eval_single_tmgen(self): # feature: single_particle def _eval_single_tmgen(self): # feature: single_particle
a = self.args a = self.args
@ -110,9 +111,9 @@ class ArgParser:
self.foreground_emg = EpsMuGenerator(EpsMu(a.material**2)) self.foreground_emg = EpsMuGenerator(EpsMu(a.material**2))
if a.height is None: if a.height is None:
self.tmgen = TMatrixGenerator.sphere(self.background_epsmu, self.foreground_emg, a.radius) self.tmgen = TMatrixGenerator.sphere(self.background_emg, self.foreground_emg, a.radius)
else: else:
self.tmgen = TMatrixGenerator.cylinder(self.background_epsmu, self.foreground_emg, a.radius, a.height, lMax_extend = a.lMax_extend) self.tmgen = TMatrixGenerator.cylinder(self.background_emg, self.foreground_emg, a.radius, a.height, lMax_extend = a.lMax_extend)
def _eval_single_omega(self): # feature: single_omega def _eval_single_omega(self): # feature: single_omega
from .constants import eV, hbar from .constants import eV, hbar

View File

@ -438,7 +438,7 @@ cdef class ScatteringSystem:
assert(len(latticebasis) <= 3 and len(latticebasis) > 0) assert(len(latticebasis) <= 3 and len(latticebasis) > 0)
orig.lattice_dimension = len(latticebasis) orig.lattice_dimension = len(latticebasis)
for d in range(len(latticebasis)): for d in range(len(latticebasis)):
orig.per.lattice_basis[d] = {'x' : latticebasis[d][0], 'y' : latticebasis[d][1], 'z' : latticebasis[d][2]} orig.per.lattice_basis[d] = {'x' : latticebasis[d][0], 'y' : latticebasis[d][1], 'z' : latticebasis[d][2] if len(latticebasis[d]) >= 3 else 0}
else: orig.lattice_dimension = 0 else: orig.lattice_dimension = 0
ssw = qpms_scatsys_apply_symmetry(&orig, sym.rawpointer(), omega, &QPMS_TOLERANCE_DEFAULT) ssw = qpms_scatsys_apply_symmetry(&orig, sym.rawpointer(), omega, &QPMS_TOLERANCE_DEFAULT)
ss = ssw[0].ss ss = ssw[0].ss
@ -495,6 +495,17 @@ cdef class ScatteringSystem:
def __get__(self): def __get__(self):
self.check_s() self.check_s()
return self.s[0].sym[0].nirreps return self.s[0].sym[0].nirreps
property lattice_dimension:
def __get__(self):
return self.s[0].lattice_dimension
property unitcell_volume:
def __get__(self):
self.check_s()
if self.lattice_dimension:
return self.s[0].per.unitcell_volume
else:
return None
def pack_vector(self, vect, iri): def pack_vector(self, vect, iri):
self.check_s() self.check_s()
@ -552,13 +563,24 @@ cdef class ScatteringSystem:
self.s, iri, 0) self.s, iri, 0)
return target_np return target_np
def translation_matrix_full(self, double k, J = QPMS_HANKEL_PLUS): def translation_matrix_full(self, cdouble wavenumber, blochvector = None, J = QPMS_HANKEL_PLUS):
self.check_s() self.check_s()
cdef size_t flen = self.s[0].fecv_size cdef size_t flen = self.s[0].fecv_size
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty( cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
(flen,flen),dtype=complex, order='C') (flen,flen),dtype=complex, order='C')
cdef cdouble[:,::1] target_view = target cdef cdouble[:,::1] target_view = target
qpms_scatsys_build_translation_matrix_e_full(&target_view[0][0], self.s, k, J) cdef cart3_t blochvector_c
if self.lattice_dimension == 0:
if blochvector is None:
qpms_scatsys_build_translation_matrix_e_full(&target_view[0][0], self.s, wavenumber, J)
else: raise ValueError("Can't use blochvector with non-periodic system")
else:
if blochvector is None: raise ValueError("Valid blochvector must be specified for periodic system")
else:
if J != QPMS_HANKEL_PLUS:
raise NotImplementedError("Translation operators based on other than Hankel+ functions not supperted in periodic systems")
blochvector_c = {'x': blochvector[0], 'y': blochvector[1], 'z': blochvector[2]}
qpms_scatsys_periodic_build_translation_matrix_full(&target_view[0][0], self.s, wavenumber, &blochvector_c)
return target return target
def translation_matrix_packed(self, double k, qpms_iri_t iri, J = QPMS_HANKEL_PLUS): def translation_matrix_packed(self, double k, qpms_iri_t iri, J = QPMS_HANKEL_PLUS):
@ -637,7 +659,7 @@ cdef class ScatteringSystem:
rank_tol, rank_min_sel, res_tol) rank_tol, rank_min_sel, res_tol)
if res == NULL: raise RuntimeError if res == NULL: raise RuntimeError
cdef size_t neig = res[0].neig cdef size_t neig = res[0].neig, i, j
cdef size_t vlen = res[0].vlen # should be equal to self.s.fecv_size cdef size_t vlen = res[0].vlen # should be equal to self.s.fecv_size
cdef np.ndarray[complex, ndim=1] eigval = np.empty((neig,), dtype=complex) cdef np.ndarray[complex, ndim=1] eigval = np.empty((neig,), dtype=complex)
@ -676,6 +698,16 @@ cdef class ScatteringSystem:
return retdict return retdict
cdef class _ScatteringSystemAtOmegaK:
'''
Wrapper over the C qpms_scatsys_at_omega_k_t structure
'''
cdef qpms_scatsys_at_omega_k_t sswk
cdef _ScatteringSystemAtOmega ssw_pyref
cdef qpms_scatsys_at_omega_k_t *rawpointer(self):
return &self.sswk
cdef class _ScatteringSystemAtOmega: cdef class _ScatteringSystemAtOmega:
''' '''
Wrapper over the C qpms_scatsys_at_omega_t structure Wrapper over the C qpms_scatsys_at_omega_t structure
@ -691,6 +723,11 @@ cdef class _ScatteringSystemAtOmega:
self.ss_pyref.check_s() self.ss_pyref.check_s()
#TODO is there a way to disable the constructor outside this module? #TODO is there a way to disable the constructor outside this module?
def ensure_finite(self):
if self.ssw[0].ss[0].lattice_dimension != 0:
raise NotImplementedError("Operation not supported for periodic systems")
def __dealloc__(self): def __dealloc__(self):
if (self.ssw): if (self.ssw):
qpms_scatsys_at_omega_free(self.ssw) qpms_scatsys_at_omega_free(self.ssw)
@ -711,9 +748,20 @@ cdef class _ScatteringSystemAtOmega:
cdef qpms_scatsys_at_omega_t *rawpointer(self): cdef qpms_scatsys_at_omega_t *rawpointer(self):
return self.ssw return self.ssw
def scatter_solver(self, iri=None): def scatter_solver(self, iri=None, k=None):
self.check() self.check()
return ScatteringMatrix(self, iri) cdef _ScatteringSystemAtOmegaK sswk # used only for periodic systems
if(self.ssw[0].ss[0].lattice_dimension == 0):
return ScatteringMatrix(self, iri=iri)
else:
if iri is not None:
raise NotImplementedError("Irrep decomposition not (yet) supported for periodic systems")
sswk = _ScatteringSystemAtOmegaK()
sswk.sswk.ssw = self.ssw
sswk.sswk.k[0] = k[0]
sswk.sswk.k[1] = k[1]
sswk.sswk.k[2] = k[2]
return ScatteringMatrix(ssw=self, sswk=sswk, iri=None)
property fecv_size: property fecv_size:
def __get__(self): return self.ss_pyref.fecv_size def __get__(self): return self.ss_pyref.fecv_size
@ -723,8 +771,11 @@ cdef class _ScatteringSystemAtOmega:
def __get__(self): return self.ss_pyref.irrep_names def __get__(self): return self.ss_pyref.irrep_names
property nirreps: property nirreps:
def __get__(self): return self.ss_pyref.nirreps def __get__(self): return self.ss_pyref.nirreps
property wavenumber:
def __get__(self): return self.ssw[0].wavenumber
def modeproblem_matrix_full(self):
def modeproblem_matrix_full(self, k=None):
self.check() self.check()
cdef size_t flen = self.ss_pyref.s[0].fecv_size cdef size_t flen = self.ss_pyref.s[0].fecv_size
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty( cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
@ -735,6 +786,7 @@ cdef class _ScatteringSystemAtOmega:
def modeproblem_matrix_packed(self, qpms_iri_t iri, version='pR'): def modeproblem_matrix_packed(self, qpms_iri_t iri, version='pR'):
self.check() self.check()
self.ensure_finite()
cdef size_t rlen = self.saecv_sizes[iri] cdef size_t rlen = self.saecv_sizes[iri]
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty( cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
(rlen,rlen),dtype=complex, order='C') (rlen,rlen),dtype=complex, order='C')
@ -748,24 +800,35 @@ cdef class _ScatteringSystemAtOmega:
qpms_scatsysw_build_modeproblem_matrix_irrep_packed_serial(&target_view[0][0], self.ssw, iri) qpms_scatsysw_build_modeproblem_matrix_irrep_packed_serial(&target_view[0][0], self.ssw, iri)
return target return target
def translation_matrix_full(self, blochvector = None):
return self.ss_pyref.translation_matrix_full(wavenumber=self.wavenumber, blochvector=blochvector)
cdef class ScatteringMatrix: cdef class ScatteringMatrix:
''' '''
Wrapper over the C qpms_ss_LU structure that keeps the factorised mode problem matrix. Wrapper over the C qpms_ss_LU structure that keeps the factorised mode problem matrix.
''' '''
cdef _ScatteringSystemAtOmega ssw # Here we keep the reference to the parent scattering system cdef _ScatteringSystemAtOmega ssw # Here we keep the reference to the parent scattering system
cdef _ScatteringSystemAtOmegaK sswk
cdef qpms_ss_LU lu cdef qpms_ss_LU lu
def __cinit__(self, _ScatteringSystemAtOmega ssw, iri=None): def __cinit__(self, _ScatteringSystemAtOmega ssw, sswk=None, iri=None):
ssw.check() ssw.check()
self.ssw = ssw self.ssw = ssw
# TODO? pre-allocate the matrix with numpy to make it transparent? if sswk is None:
if iri is None: ssw.ensure_finite()
self.lu = qpms_scatsysw_build_modeproblem_matrix_full_LU( # TODO? pre-allocate the matrix with numpy to make it transparent?
NULL, NULL, ssw.rawpointer()) if iri is None:
self.lu = qpms_scatsysw_build_modeproblem_matrix_full_LU(
NULL, NULL, ssw.rawpointer())
else:
self.lu = qpms_scatsysw_build_modeproblem_matrix_irrep_packed_LU(
NULL, NULL, ssw.rawpointer(), iri)
else: else:
self.lu = qpms_scatsysw_build_modeproblem_matrix_irrep_packed_LU( # TODO check sswk validity
NULL, NULL, ssw.rawpointer(), iri) self.sswk = sswk
self.lu = qpms_scatsyswk_build_modeproblem_matrix_full_LU(NULL, NULL, self.sswk.rawpointer())
def __dealloc__(self): def __dealloc__(self):
qpms_ss_LU_free(self.lu) qpms_ss_LU_free(self.lu)

View File

@ -531,6 +531,7 @@ cdef extern from "scatsystem.h":
qpms_tmatrix_operation_t op qpms_tmatrix_operation_t op
struct qpms_scatsys_periodic_info_t: struct qpms_scatsys_periodic_info_t:
cart3_t lattice_basis[3] cart3_t lattice_basis[3]
double unitcell_volume
#etc. #etc.
struct qpms_scatsys_t: struct qpms_scatsys_t:
int lattice_dimension int lattice_dimension
@ -616,8 +617,7 @@ cdef extern from "scatsystem.h":
double k[3] double k[3]
cdouble *qpms_scatsyswk_build_modeproblem_motrix_full(cdouble *target, const qpms_scatsys_at_omega_k_t *sswk) cdouble *qpms_scatsyswk_build_modeproblem_motrix_full(cdouble *target, const qpms_scatsys_at_omega_k_t *sswk)
cdouble *qpms_scatsys_periodic_build_translation_matrix_full(cdouble *target, const qpms_scatsys_t *ss, cdouble wavenumber, const cart3_t *wavevector) cdouble *qpms_scatsys_periodic_build_translation_matrix_full(cdouble *target, const qpms_scatsys_t *ss, cdouble wavenumber, const cart3_t *wavevector)
cdouble *qpms_scatsyswk_build_translation_matrix_full(cdouble *target, const qpms_scatsys_at_omega_k_t *sswk) qpms_ss_LU qpms_scatsyswk_build_modeproblem_matrix_full_LU(cdouble *target, int *target_piv, const qpms_scatsys_at_omega_k_t *sswk)
qpms_ss_LU qpms_scatsyswk_build_modeproblem_matrix_full_LU(cdouble *target, int *target_piv, const qpms_scatsys_at_omega_t *sswk)
beyn_result_t *qpms_scatsys_periodic_find_eigenmodes(const qpms_scatsys_t *ss, const double *k, beyn_result_t *qpms_scatsys_periodic_find_eigenmodes(const qpms_scatsys_t *ss, const double *k,
cdouble omega_centre, double omega_rr, double omega_ri, size_t contour_npoints, cdouble omega_centre, double omega_rr, double omega_ri, size_t contour_npoints,
double rank_tol, size_t rank_sel_min, double res_tol) double rank_tol, size_t rank_sel_min, double res_tol)

View File

@ -1266,7 +1266,7 @@ static inline complex double *qpms_scatsysw_scatsyswk_build_modeproblem_matrix_f
{ {
const complex double wavenumber = ssw->wavenumber; const complex double wavenumber = ssw->wavenumber;
const qpms_scatsys_t *ss = ssw->ss; const qpms_scatsys_t *ss = ssw->ss;
qpms_ss_ensure_nonperiodic(ss); qpms_ss_ensure_periodic(ss);
const size_t full_len = ss->fecv_size; const size_t full_len = ss->fecv_size;
if(!target) if(!target)
QPMS_CRASHING_MALLOC(target, SQ(full_len) * sizeof(complex double)); QPMS_CRASHING_MALLOC(target, SQ(full_len) * sizeof(complex double));