Implement some Päivi's comments.
Former-commit-id: a0cc5aec2ef60611d5154b68f55089f7ffac170e
This commit is contained in:
parent
21a1313a55
commit
3b6dedf4a2
|
@ -597,11 +597,11 @@ Category: Methods and Algorithms for Scientific Computing?
|
|||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
The (somewhat underrated) T-matrix multiple scattering method (TMMSM) can
|
||||
be used to solve the electromagnetic response of systems consisting of
|
||||
many compact scatterers, retaining a good level of accuracy while using
|
||||
relatively few of degrees of freedom, largely surpassing other methods
|
||||
in the number of scatterers it can deal with.
|
||||
The T-matrix multiple scattering method (TMMSM) can be used to solve the
|
||||
electromagnetic response of systems consisting of many compact scatterers,
|
||||
retaining a good level of accuracy while using relatively few degrees of
|
||||
freedom, largely surpassing other methods in the number of scatterers it
|
||||
can deal with.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
|
|
|
@ -488,7 +488,7 @@ noprefix "false"
|
|||
|
||||
around the origin (typically due to presence of a scatterer), one has to
|
||||
add the outgoing VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
|
@ -608,7 +608,7 @@ transition matrix,
|
|||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix we can solve the single-patricle scatering prroblem simply by substituti
|
||||
-matrix we can solve the single-particle scattering problem simply by substituti
|
||||
ng appropriate expansion coefficients
|
||||
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
||||
\end_inset
|
||||
|
@ -680,12 +680,12 @@ literal "false"
|
|||
|
||||
, but in general one can find them numerically by simulating scattering
|
||||
of a regular spherical wave
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm$
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
and projecting the scattered fields (or induced currents, depending on
|
||||
the method) onto the outgoing VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}{'l'}{m'}$
|
||||
\begin_inset Formula $\vswfouttlm{\tau'}{l'}{m'}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -974,15 +974,67 @@ noprefix "false"
|
|||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
via by electromagnetic radiation is
|
||||
by electromagnetic radiation is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:Power transport}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
In realistic scattering setups, power is transferred by radiation into
|
||||
where
|
||||
\begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
|
||||
\end_inset
|
||||
|
||||
are wave impedance of vacuum and relative wave impedance of the medium
|
||||
in
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
, respectively.
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\nospellcheck off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\xout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $P$
|
||||
\end_inset
|
||||
|
||||
is well-defined only when
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is real.
|
||||
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\nospellcheck default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\xout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
In realistic scattering setups, power is transferred by radiation into
|
||||
|
||||
\begin_inset Formula $\openball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
|
@ -1319,7 +1371,7 @@ where
|
|||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
is a block-diagonal matrix containing all the individual
|
||||
is a block-diagonal matrix containing all the individual
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
|
@ -1357,9 +1409,12 @@ In practice, the multiple-scattering problem is solved in its truncated
|
|||
\begin_inset Formula $\tau lm$
|
||||
\end_inset
|
||||
|
||||
-multiindices left.
|
||||
-multi-indices left.
|
||||
The truncation degree can vary for different scatterers (e.g.
|
||||
due to different physical sizes), so the truncated block
|
||||
\begin_inset space \space{}
|
||||
\end_inset
|
||||
|
||||
due to different physical sizes), so the truncated block
|
||||
\begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$
|
||||
\end_inset
|
||||
|
||||
|
@ -1394,7 +1449,7 @@ If no other type of truncation is done, there remain
|
|||
\begin_inset Formula $\tau lm$
|
||||
\end_inset
|
||||
|
||||
-multiindices for
|
||||
-multi-indices for the
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
|
|
|
@ -117,7 +117,7 @@ Some refs here?
|
|||
|
||||
\end_inset
|
||||
|
||||
The most commonly used general approaches used in computational electrodynamics
|
||||
The most common general approaches used in computational electrodynamics
|
||||
are often unsuitable for simulating systems with larger number of scatterers
|
||||
due to their computational complexity: differential methods such as the
|
||||
finite difference time domain (FDTD) method or the finite element method
|
||||
|
@ -159,8 +159,8 @@ literal "false"
|
|||
|
||||
\begin_layout Standard
|
||||
The natural way to overcome both limitations of CDA mentioned above is to
|
||||
include higher multipoles into account.
|
||||
Instead of polarisability tensor, the scattering properties of an individual
|
||||
take higher multipoles into account.
|
||||
Instead of a polarisability tensor, the scattering properties of an individual
|
||||
particle are then described with more general
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
@ -280,20 +280,10 @@ TODO refs to the code repositories once it is published.
|
|||
The features include computations of electromagnetic response to external
|
||||
driving, the related cross sections, and finding resonances of finite structure
|
||||
s.
|
||||
Moreover, it includes the improvements covered in this paper, enabling
|
||||
Moreover, it includes the improvements covered in this article, enabling
|
||||
to simulate even larger systems and also infinite structures with periodicity
|
||||
in one, two or three dimensions, which can be used e.g.
|
||||
for quickly evaluating dispersions of such structures
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
And also their topological invariants (TODO)?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
in one or two or three dimensions, which can be used e.g.
|
||||
for quickly evaluating dispersions of such structures.
|
||||
The QPMS suite contains a core C library, Python bindings and several utilities
|
||||
for routine computations.
|
||||
\begin_inset Marginal
|
||||
|
|
Loading…
Reference in New Issue