From 3bbdee97269280ea011520cb90860df5bf1fb30f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Sun, 11 Nov 2018 07:06:35 +0000 Subject: [PATCH] Some 1D lattice sums Former-commit-id: 0be7e862f22ebb37523d263ad98856c1dfcc1bff --- notes/ewald.lyx | 43 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 38 insertions(+), 5 deletions(-) diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 6e0fff4..696b1ad 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -3399,6 +3399,39 @@ The only diverging factor here is apparently \end_inset +\end_layout + +\begin_layout Subsection +1D +\end_layout + +\begin_layout Standard +One-dimensional lattice sums are provided in [REF LT, sect. + 3]. + However, these are the +\begin_inset Quotes eld +\end_inset + +non-shifted +\begin_inset Quotes erd +\end_inset + + sums, +\begin_inset Formula +\begin{eqnarray*} +\ell_{n}\left(\beta\right) & = & \sum_{j\in\ints}^{'}e^{i\beta aj}\mathcal{H}_{n}^{0}\left(aj\hat{\vect z}\right)\\ + & = & \sum_{j\in\ints}^{'}e^{i\beta aj}h_{n}\left(\left|aj\right|\right)Y_{n}^{0}\\ + & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}P_{n}^{0}\left(\sgn j\right)h_{n}\left(\left|aj\right|\right)e^{i\beta aj}\\ + & = & \sqrt{\frac{2n+1}{4\pi}}\sum_{j\in\ints}^{'}\left(\sgn j\right)^{n}h_{n}\left(\left|aj\right|\right)e^{i\beta aj}, +\end{eqnarray*} + +\end_inset + +where we used +\begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$ +\end_inset + + \end_layout \begin_layout Section @@ -3485,7 +3518,7 @@ where the spherical Hankel transform 2) \begin_inset Formula \[ -\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). \] \end_inset @@ -3495,7 +3528,7 @@ Using this convention, the inverse spherical Hankel transform is given by 3) \begin_inset Formula \[ -g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), \] \end_inset @@ -3508,7 +3541,7 @@ so it is not unitary. An unitary convention would look like this: \begin_inset Formula \begin{equation} -\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \end{equation} \end_inset @@ -3562,8 +3595,8 @@ where the Hankel transform of order is defined as \begin_inset Formula \begin{eqnarray} -\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ - & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r +\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ + & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r \end{eqnarray} \end_inset