Merge branch 'article'
Former-commit-id: f71a814fb96a3682099e45fe8753c78442fc231c
This commit is contained in:
commit
3ce28b21af
|
@ -1,60 +0,0 @@
|
|||
|
||||
@article{xu_efficient_1998,
|
||||
title = {Efficient {{Evaluation}} of {{Vector Translation Coefficients}} in {{Multiparticle Light}}-{{Scattering Theories}}},
|
||||
volume = {139},
|
||||
issn = {0021-9991},
|
||||
abstract = {Vector addition theorems are a necessary ingredient in the analytical solution of electromagnetic multiparticle-scattering problems. These theorems include a large number of vector addition coefficients. There exist three basic types of analytical expressions for vector translation coefficients: Stein's (Quart. Appl. Math.19, 15 (1961)), Cruzan's (Quart. Appl. Math.20, 33 (1962)), and Xu's (J. Comput. Phys.127, 285 (1996)). Stein's formulation relates vector translation coefficients with scalar translation coefficients. Cruzan's formulas use the Wigner 3jm symbol. Xu's expressions are based on the Gaunt coefficient. Since the scalar translation coefficient can also be expressed in terms of the Gaunt coefficient, the key to the expeditious and reliable calculation of vector translation coefficients is the fast and accurate evaluation of the Wigner 3jm symbol or the Gaunt coefficient. We present highly efficient recursive approaches to accurately evaluating Wigner 3jm symbols and Gaunt coefficients. Armed with these recursive approaches, we discuss several schemes for the calculation of the vector translation coefficients, using the three general types of formulation, respectively. Our systematic test calculations show that the three types of formulas produce generally the same numerical results except that the algorithm of Stein's type is less accurate in some particular cases. These extensive test calculations also show that the scheme using the formulation based on the Gaunt coefficient is the most efficient in practical computations.},
|
||||
number = {1},
|
||||
journal = {Journal of Computational Physics},
|
||||
doi = {10.1006/jcph.1997.5867},
|
||||
author = {Xu, Yu-lin},
|
||||
month = jan,
|
||||
year = {1998},
|
||||
pages = {137-165},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/STV5263F/Xu - 1998 - Efficient Evaluation of Vector Translation Coeffic.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/VMGZRSAA/S0021999197958678.html}
|
||||
}
|
||||
|
||||
@book{jackson_classical_1998,
|
||||
address = {{New York}},
|
||||
edition = {3 edition},
|
||||
title = {Classical {{Electrodynamics Third Edition}}},
|
||||
isbn = {978-0-471-30932-1},
|
||||
abstract = {A revision of the defining book covering the physics and classical mathematics necessary to understand electromagnetic fields in materials and at surfaces and interfaces. The third edition has been revised to address the changes in emphasis and applications that have occurred in the past twenty years.},
|
||||
language = {English},
|
||||
publisher = {{Wiley}},
|
||||
author = {Jackson, John David},
|
||||
month = aug,
|
||||
year = {1998},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/3BWPD4BK/John David Jackson-Classical Electrodynamics-Wiley (1999).djvu}
|
||||
}
|
||||
|
||||
@article{mie_beitrage_1908,
|
||||
title = {Beitr{\"a}ge Zur {{Optik}} Tr{\"u}ber {{Medien}}, Speziell Kolloidaler {{Metall{\"o}sungen}}},
|
||||
volume = {330},
|
||||
copyright = {Copyright \textcopyright{} 1908 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim},
|
||||
issn = {1521-3889},
|
||||
language = {en},
|
||||
number = {3},
|
||||
journal = {Ann. Phys.},
|
||||
doi = {10.1002/andp.19083300302},
|
||||
author = {Mie, Gustav},
|
||||
month = jan,
|
||||
year = {1908},
|
||||
pages = {377-445},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/RM9J9RYH/Mie - 1908 - Beiträge zur Optik trüber Medien, speziell kolloid.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/F5A7EX6R/abstract.html}
|
||||
}
|
||||
|
||||
@book{kristensson_scattering_2016,
|
||||
address = {{Edison, NJ}},
|
||||
title = {Scattering of {{Electromagnetic Waves}} by {{Obstacles}}},
|
||||
isbn = {978-1-61353-221-8},
|
||||
abstract = {This book is an introduction to some of the most important properties of electromagnetic waves and their interaction with passive materials and scatterers. The main purpose of the book is to give a theoretical treatment of these scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials. The scattering theory is also important in the theory of passive antennas, and this book gives several examples on this topic. Topics covered include an introduction to the basic equations used in scattering; the Green functions and dyadics; integral representation of fields; introductory scattering theory; scattering in the time domain; approximations and applications; spherical vector waves; scattering by spherical objects; the null-field approach; and propagation in stratified media. The book is organised along two tracks, which can be studied separately or together. Track 1 material is appropriate for a first reading of the textbook, while Track 2 contains more advanced material suited for the second reading and for reference. Exercises are included for each chapter.},
|
||||
language = {English},
|
||||
publisher = {{Scitech Publishing}},
|
||||
author = {Kristensson, Gerhard},
|
||||
month = jul,
|
||||
year = {2016},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/3R7VYZUK/Kristensson - 2016 - Scattering of Electromagnetic Waves by Obstacles.pdf}
|
||||
}
|
||||
|
||||
|
|
@ -1,29 +1,40 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\begin_preamble
|
||||
\DeclareUnicodeCharacter{0428}{Ш }
|
||||
\end_preamble
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
|
@ -38,7 +49,7 @@
|
|||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\papersize a4paper
|
||||
\use_geometry false
|
||||
\use_package amsmath 2
|
||||
\use_package amssymb 1
|
||||
|
@ -59,6 +70,8 @@
|
|||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
|
@ -67,10 +80,14 @@
|
|||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language english
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
|
@ -117,6 +134,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\uvec}[1]{\mathbf{\hat{#1}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ud}{\mathrm{d}}
|
||||
\end_inset
|
||||
|
@ -127,11 +149,25 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dc}[1]{Ш_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dc}[1]{\mathrm{III}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rec}[1]{#1^{-1}}
|
||||
\end_inset
|
||||
|
@ -162,6 +198,16 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vsh}[3]{\vect A_{#1,#2,#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vshD}[3]{\vect A'_{#1,#2,#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hgfr}{\mathbf{F}}
|
||||
\end_inset
|
||||
|
@ -213,7 +259,7 @@
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\particle}{\mathrm{\Omega}}
|
||||
\newcommand{\particle}{\mathrm{\Theta}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -232,15 +278,193 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffp}[1]{a_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffincp}[1]{a_{#1}^{\mathrm{inc.}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeff}{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffinc}{a^{\mathrm{inc.}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffptlm}[4]{\rcoeffp{#1,#2#3#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoefftlm}[3]{\rcoeffp{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffincptlm}[4]{\rcoeffincp{#1,#2#3#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfrtlm}[3]{\vect v_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeff}{f}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeffp}[1]{f_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeffptlm}[4]{\outcoeffp{#1,#2#3#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoefftlm}[3]{\outcoeffp{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfouttlm}[3]{\vect u_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Tp}[1]{T_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\openball}[2]{B_{#1}\left(#2\right)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\closedball}[2]{B_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\tropr}{\mathcal{R}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\troprp}[2]{\mathcal{\tropr}_{#1\leftarrow#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\trops}{\mathcal{S}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\tropsp}[2]{\mathcal{\trops}_{#1\leftarrow#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\truncated}[2]{\left[#1\right]_{l\le#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\truncate}[2]{\left[#1\right]_{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlmfFer}[2]{\mathsf{P}_{#1}^{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\antidelta}{\gamma}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
These are compatibility macros for the (...)-old files:
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfr}[3]{\vswfrtlm{#3}{#1}{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfs}[3]{\vswfouttlm{#3}{#1}{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\svwfs}[3]{\vswfouttlm{#3}{#1}{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffrip}[4]{\rcoeffptlm{#1}{#4}{#2}{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffsip}[4]{\outcoeffptlm{#1}{#4}{#2}{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffr}{\rcoeffp{}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffs}{\outcoeffp{}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\transop}{\trops}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffripext}[4]{\rcoeffincptlm{#1}{#4}{#2}{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Kp}{K}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
Some nice title about multiple scattering approach to photonic nanoparticle
|
||||
arrays (outline)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Author
|
||||
Marek Nečada
|
||||
QPMS Photonic Multiple Scattering suite (TODO better title)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -254,6 +478,10 @@ The purpose of SIAM Journal on Scientific Computing (SISC) is to advance
|
|||
|
||||
\begin_layout Quotation
|
||||
SISC papers are classified into three categories:
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -307,12 +535,31 @@ Due to space limitations, articles are normally limited to 20 journal pages.
|
|||
Category: Methods and Algorithms for Scientific Computing?
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
The (somewhat underrated) T-matrix multiple scattering method (TMMSM) can
|
||||
be used to solve the electromagnetic response of systems consisting of
|
||||
many compact scatterers.
|
||||
It largely surpasses other methods in the number of scatterers it can deal
|
||||
with, while retaining very good accuracy.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
TODO REWRITE: We release a modern implementation of the method under GNU
|
||||
General Public Licence, with several theoretical advancements presented
|
||||
here, such as exploiting the system symmetries to further improve the efficienc
|
||||
y of the method, or extending it on infinite periodic systems.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Outline
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Intro:
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -343,6 +590,10 @@ my implementation
|
|||
\end_deeper
|
||||
\begin_layout Itemize
|
||||
Finite systems:
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -353,11 +604,19 @@ motivation (classes of problems that this can solve: response to external
|
|||
|
||||
\begin_layout Itemize
|
||||
theory
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
\begin_layout Itemize
|
||||
T-matrix definition, basics
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -385,6 +644,10 @@ Example results (or maybe rather in the end)
|
|||
\end_deeper
|
||||
\begin_layout Itemize
|
||||
Infinite lattices:
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -394,6 +657,10 @@ motivation (dispersion relations / modes, ...?)
|
|||
|
||||
\begin_layout Itemize
|
||||
theory
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -432,10 +699,83 @@ My implementation.
|
|||
Maybe put the numerical results separately in the end.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
TODOs
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Consistent notation of balls.
|
||||
How is the difference between two cocentric balls called?
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Abstract.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Translation operators: rewrite in sph.
|
||||
harm.
|
||||
convention independent form.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Truncation notation.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Example results!
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Figures.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Concrete comparison with other methods.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Fix and unify notation (mainly indices) in infinite lattices section.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Carefully check the transformation directions in sec.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Symmetries"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
The text about symmetries is pretty dense.
|
||||
Make it more explanatory and human-readable.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Check whether everything written is correct also for non-symmetric space
|
||||
groups.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "intro.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "finite.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -443,9 +783,19 @@ filename "intro.lyx"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "finite.lyx"
|
||||
filename "finite-old.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -456,6 +806,38 @@ filename "finite.lyx"
|
|||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "infinite.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "infinite-old.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "symmetries.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -466,6 +848,7 @@ filename "infinite.lyx"
|
|||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "examples.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -475,8 +858,10 @@ filename "examples.lyx"
|
|||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
bibfiles "T-matrix paper"
|
||||
btprint "btPrintCited"
|
||||
bibfiles "tmpaper"
|
||||
options "plain"
|
||||
encoding "default"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Section
|
||||
Comparison to other methods
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Comparison"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
|
@ -1,29 +1,37 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
|
@ -58,6 +66,8 @@
|
|||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
|
@ -66,10 +76,14 @@
|
|||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
|
|
|
@ -0,0 +1,385 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures false
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Subsection
|
||||
The multiple-scattering problem
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:The-multiple-scattering-problem"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix approach, scattering properties of single nanoparticles in a homogeneous
|
||||
medium are first computed in terms of vector sperical wavefunctions (VSWFs)—the
|
||||
field incident onto the
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-th nanoparticle from external sources can be expanded as
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\vswfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\vect R_{n}$
|
||||
\end_inset
|
||||
|
||||
being the position of the centre of
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-th nanoparticle and
|
||||
\begin_inset Formula $\vswfr lmt$
|
||||
\end_inset
|
||||
|
||||
are the regular VSWFs which can be expressed in terms of regular spherical
|
||||
Bessel functions of
|
||||
\begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$
|
||||
\end_inset
|
||||
|
||||
and spherical harmonics
|
||||
\begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$
|
||||
\end_inset
|
||||
|
||||
; the expressions, together with a proof that the VSWFs span all the solutions
|
||||
of vector Helmholtz equation around the particle, justifying the expansion,
|
||||
can be found e.g.
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "chapter 7"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
(care must be taken because of varying normalisation and phase conventions).
|
||||
On the other hand, the field scattered by the particle can be (outside
|
||||
the particle's circumscribing sphere) expanded in terms of singular VSWFs
|
||||
|
||||
\begin_inset Formula $\vswfs lmt$
|
||||
\end_inset
|
||||
|
||||
which differ from the regular ones by regular spherical Bessel functions
|
||||
being replaced with spherical Hankel functions
|
||||
\begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vect E_{n}^{\mathrm{scat}}\left(\vect r\right)=\sum_{l,m,t}\coeffsip nlmt\vswfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
The expansion coefficients
|
||||
\begin_inset Formula $\coeffsip nlmt$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $t=\mathrm{E},\mathrm{M}$
|
||||
\end_inset
|
||||
|
||||
are related to the electric and magnetic multipole polarization amplitudes
|
||||
of the nanoparticle.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
At a given frequency, assuming the system is linear, the relation between
|
||||
the expansion coefficients in the VSWF bases is given by the so-called
|
||||
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\coeffsip nlmt=\sum_{l',m',t'}T_{n}^{lmt;l'm't'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
The
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix is given by the shape and composition of the particle and fully
|
||||
describes its scattering properties.
|
||||
In theory it is infinite-dimensional, but in practice (at least for subwaveleng
|
||||
th nanoparticles) its elements drop very quickly to negligible values with
|
||||
growing degree indices
|
||||
\begin_inset Formula $l,l'$
|
||||
\end_inset
|
||||
|
||||
, enabling to take into account only the elements up to some finite degree,
|
||||
|
||||
\begin_inset Formula $l,l'\le l_{\mathrm{max}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix can be calculated numerically using various methods; here we used
|
||||
the scuff-tmatrix tool from the SCUFF-EM suite
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "SCUFF2,reid_efficient_2015"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
, which implements the boundary element method (BEM).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The singular VSWFs originating at
|
||||
\begin_inset Formula $\vect R_{n}$
|
||||
\end_inset
|
||||
|
||||
can be then re-expanded around another origin (nanoparticle location)
|
||||
\begin_inset Formula $\vect R_{n'}$
|
||||
\end_inset
|
||||
|
||||
in terms of regular VSWFs,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\begin{split}\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n'}-\vect R_{n}\right)\vswfr{l'}{m'}{t'}\left(\vect r_{n'}\right),\\
|
||||
\left|\vect r_{n'}\right|<\left|\vect R_{n'}-\vect R_{n}\right|.
|
||||
\end{split}
|
||||
\label{eq:translation op def}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Analytical expressions for the translation operator
|
||||
\begin_inset Formula $\transop^{lmt;l'm't'}\left(\vect R_{n'}-\vect R_{n}\right)$
|
||||
\end_inset
|
||||
|
||||
can be found in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "xu_efficient_1998"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If we write the field incident onto the
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-th nanoparticle as the sum of fields scattered from all the other nanoparticles
|
||||
and an external field
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
(which we also expand around each nanoparticle,
|
||||
\begin_inset Formula $\vect E_{0}\left(\vect r\right)=\sum_{l,m,t}\coeffripext nlmt\vswfr lmt\left(\vect r_{n}\right)$
|
||||
\end_inset
|
||||
|
||||
),
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and use eqs.
|
||||
(
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:E_inc"
|
||||
|
||||
\end_inset
|
||||
|
||||
)–(
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:translation op def"
|
||||
|
||||
\end_inset
|
||||
|
||||
), we obtain a set of linear equations for the electromagnetic response
|
||||
(multiple scattering) of the whole set of nanoparticles,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\begin{split}\coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\\
|
||||
\times\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}.
|
||||
\end{split}
|
||||
\label{eq:multiplescattering element-wise}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
It is practical to get rid of the VSWF indices, rewriting (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:multiplescattering element-wise"
|
||||
|
||||
\end_inset
|
||||
|
||||
) in a per-particle matrix form
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\coeffr_{n}=\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}T_{n'}p_{n'}\label{eq:multiple scattering per particle p}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
and to reformulate the problem using (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Tmatrix definition"
|
||||
|
||||
\end_inset
|
||||
|
||||
) in terms of the
|
||||
\begin_inset Formula $\coeffs$
|
||||
\end_inset
|
||||
|
||||
-coefficients which describe the multipole excitations of the particles
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Knowing
|
||||
\begin_inset Formula $T_{n},S_{n,n'},\coeffr_{\mathrm{ext}(n)}$
|
||||
\end_inset
|
||||
|
||||
, the nanoparticle excitations
|
||||
\begin_inset Formula $a_{n}$
|
||||
\end_inset
|
||||
|
||||
can be solved by standard linear algebra methods.
|
||||
The total scattered field anywhere outside the particles' circumscribing
|
||||
spheres is then obtained by summing the contributions (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:E_scat"
|
||||
|
||||
\end_inset
|
||||
|
||||
) from all particles.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
1898
lepaper/finite.lyx
1898
lepaper/finite.lyx
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,496 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options false
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
\language_package none
|
||||
\inputencoding utf8
|
||||
\fontencoding default
|
||||
\font_roman "default" "default"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_roman_osf false
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 0
|
||||
\use_package cancel 0
|
||||
\use_package esint 1
|
||||
\use_package mathdots 0
|
||||
\use_package mathtools 0
|
||||
\use_package mhchem 0
|
||||
\use_package stackrel 0
|
||||
\use_package stmaryrd 0
|
||||
\use_package undertilde 0
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 0
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Subsection
|
||||
Periodic systems and mode analysis
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:Periodic-systems"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In an infinite periodic array of nanoparticles, the excitations of the nanoparti
|
||||
cles take the quasiperiodic Bloch-wave form
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
(assuming the incident external field has the same periodicity,
|
||||
\begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$
|
||||
\end_inset
|
||||
|
||||
) where
|
||||
\begin_inset Formula $\nu$
|
||||
\end_inset
|
||||
|
||||
is the index of a particle inside one unit cell and
|
||||
\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
|
||||
\end_inset
|
||||
|
||||
are the lattice vectors corresponding to the sites (labeled by multiindices
|
||||
|
||||
\begin_inset Formula $i,i'$
|
||||
\end_inset
|
||||
|
||||
) of a Bravais lattice
|
||||
\begin_inset Formula $\Lambda$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The multiple-scattering problem (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:multiple scattering per particle a"
|
||||
|
||||
\end_inset
|
||||
|
||||
) then takes the form
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
or, labeling
|
||||
\begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$
|
||||
\end_inset
|
||||
|
||||
and using the quasiperiodicity,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
which reduces the linear problem (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:multiple scattering per particle a"
|
||||
|
||||
\end_inset
|
||||
|
||||
) to interactions between particles inside single unit cell.
|
||||
A problematic part is the evaluation of the translation operator lattice
|
||||
sums
|
||||
\begin_inset Formula $W_{\nu\nu'}$
|
||||
\end_inset
|
||||
|
||||
; this is performed using exponentially convergent Ewald-type representations
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "linton_lattice_2010"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In an infinite periodic system, a nonlossy mode supports itself without
|
||||
external driving, i.e.
|
||||
such mode is described by excitation coefficients
|
||||
\begin_inset Formula $a_{\nu}$
|
||||
\end_inset
|
||||
|
||||
that satisfy eq.
|
||||
(
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:multiple scattering per particle a periodic"
|
||||
|
||||
\end_inset
|
||||
|
||||
) with zero right-hand side.
|
||||
That can happen if the block matrix
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
from the left hand side of (
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:multiple scattering per particle a periodic"
|
||||
|
||||
\end_inset
|
||||
|
||||
) is singular (here we explicitly note the
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
depence).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For lossy nanoparticles, however, perfect propagating modes will not exist
|
||||
and
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
will never be perfectly singular.
|
||||
Therefore in practice, we get the bands by scanning over
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
to search for
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
which have an
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
almost zero
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
singular value.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
\begin_inset ERT
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
{
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Symmetries
|
||||
\begin_inset ERT
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
}
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sm:symmetries"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A general overview of utilizing group theory to find lattice modes at high-symme
|
||||
try points of the Brillouin zone can be found e.g.
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "chapters 10–11"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
; here we use the same notation.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We analyse the symmetries of the system in the same VSWF representation
|
||||
as used in the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix formalism introduced above.
|
||||
We are interested in the modes at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point of the hexagonal lattice, which has the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
point symmetry.
|
||||
The six irreducible representations (irreps) of the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
group are known and are available in the literature in their explicit forms.
|
||||
In order to find and classify the modes, we need to find a decomposition
|
||||
of the lattice mode representation
|
||||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
|
||||
\end_inset
|
||||
|
||||
into the irreps of
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The equivalence representation
|
||||
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
|
||||
\end_inset
|
||||
|
||||
is the
|
||||
\begin_inset Formula $E'$
|
||||
\end_inset
|
||||
|
||||
representation as can be deduced from
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (11.19)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
, eq.
|
||||
(11.19) and the character table for
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
|
||||
\end_inset
|
||||
|
||||
operates on a space spanned by the VSWFs around each nanoparticle in the
|
||||
unit cell (the effects of point group operations on VSWFs are described
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "schulz_point-group_1999"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
This space can be then decomposed into invariant subspaces of the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
using the projectors
|
||||
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
|
||||
\end_inset
|
||||
|
||||
defined by
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (4.28)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This way, we obtain a symmetry adapted basis
|
||||
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
|
||||
\end_inset
|
||||
|
||||
as linear combinations of VSWFs
|
||||
\begin_inset Formula $\vswfs lm{p,t}$
|
||||
\end_inset
|
||||
|
||||
around the constituting nanoparticles (labeled
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
),
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
stands for one of the six different irreps of
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
labels the different realisations of the same irrep, and the last index
|
||||
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
going from 1 to
|
||||
\begin_inset Formula $d_{\Gamma}$
|
||||
\end_inset
|
||||
|
||||
(the dimensionality of
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
) labels the different partners of the same given irrep.
|
||||
The number of how many times is each irrep contained in
|
||||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
|
||||
\end_inset
|
||||
|
||||
(i.e.
|
||||
the range of index
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
for given
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
) depends on the multipole degree cutoff
|
||||
\begin_inset Formula $l_{\mathrm{max}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Each mode at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point shall lie in the irreducible spaces of only one of the six possible
|
||||
irreps and it can be shown via
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (2.51)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
that, at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point, the matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
defined above takes a block-diagonal form in the symmetry-adapted basis,
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This enables us to decompose the matrix according to the irreps and to solve
|
||||
the singular value problem in each irrep separately, as done in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "smfig:dispersions"
|
||||
|
||||
\end_inset
|
||||
|
||||
(a).
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
|
@ -1,29 +1,37 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
|
@ -58,6 +66,8 @@
|
|||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
|
@ -66,10 +76,14 @@
|
|||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
|
@ -81,123 +95,201 @@
|
|||
|
||||
\begin_layout Section
|
||||
Infinite periodic systems
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlv}{\vect a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rlv}{\vect b}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Although large finite systems are where MSTMM excels the most, there are
|
||||
several reasons that makes its extension to infinite lattices (where periodic
|
||||
boundary conditions might be applied) desirable as well.
|
||||
Other methods might be already fast enough, but MSTMM will be faster in
|
||||
most cases in which there is enough spacing between the neighboring particles.
|
||||
MSTMM works well with any space group symmetry the system might have (as
|
||||
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
|
||||
which makes e.g.
|
||||
application of group theory in mode analysis quite easy.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Topology anoyne?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
And finally, having a method that handles well both infinite and large
|
||||
finite system gives a possibility to study finite-size effects in periodic
|
||||
scatterer arrays.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Notation
|
||||
\end_layout
|
||||
|
||||
\lang english
|
||||
\begin_layout Standard
|
||||
TODO Fourier transforms, Delta comb, lattice bases, reciprocal lattices
|
||||
etc.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Formulation of the problem
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
Assume a system of compact EM scatterers in otherwise homogeneous and isotropic
|
||||
medium, and assume that the system, i.e.
|
||||
both the medium and the scatterers, have linear response.
|
||||
A scattering problem in such system can be written as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
|
||||
\]
|
||||
Let us have a linear system of compact EM scatterers on a homogeneous background
|
||||
as in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "subsec:Multiple-scattering"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $T_{α}$
|
||||
, but this time, the system shall be periodic: let there be a
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
is the
|
||||
\begin_inset Formula $T$
|
||||
-dimensional (
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
-matrix for scatterer α,
|
||||
\begin_inset Formula $A_{α}$
|
||||
can be 1, 2 or 3) lattice embedded into the three-dimensional real space,
|
||||
with lattice vectors
|
||||
\begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$
|
||||
\end_inset
|
||||
|
||||
is its vector of the scattered wave expansion coefficient (the multipole
|
||||
indices are not explicitely indicated here) and
|
||||
\begin_inset Formula $P_{α}$
|
||||
, and let the lattice points be labeled with an
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
is the local expansion of the incoming sources.
|
||||
|
||||
\begin_inset Formula $S_{α\leftarrowβ}$
|
||||
-dimensional integar multiindex
|
||||
\begin_inset Formula $\vect n\in\ints^{d}$
|
||||
\end_inset
|
||||
|
||||
is ...
|
||||
and ...
|
||||
is ...
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
...
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
Now suppose that the scatterers constitute an infinite lattice
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Due to the periodicity, we can write
|
||||
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $T_{\vect aα}=T_{\alpha}$
|
||||
, so the lattice points have cartesian coordinates
|
||||
\begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In order to find lattice modes, we search for solutions with zero RHS
|
||||
There can be several scatterers per unit cell with indices
|
||||
\begin_inset Formula $\alpha$
|
||||
\end_inset
|
||||
|
||||
from set
|
||||
\begin_inset Formula $\mathcal{P}_{1}$
|
||||
\end_inset
|
||||
|
||||
and (relative) positions inside the unit cell
|
||||
\begin_inset Formula $\vect r_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
; any particle of the periodic system can thus be labeled by a multiindex
|
||||
from
|
||||
\begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The scatterers are located at positions
|
||||
\begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
and their
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices are periodic,
|
||||
\begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In such system, the multiple-scattering problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be rewritten as
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
|
||||
\]
|
||||
\begin{equation}
|
||||
\outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
and we assume periodic solution
|
||||
\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Due to periodicity, we can also write
|
||||
\begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$
|
||||
\end_inset
|
||||
|
||||
, yielding
|
||||
.
|
||||
Assuming quasi-periodic right-hand side with quasi-momentum
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\end_inset
|
||||
|
||||
, the solutions of
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem periodic"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
will be also quasi-periodic according to Bloch theorem,
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\end_inset
|
||||
|
||||
, and eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem periodic"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be rewritten as follows
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
|
||||
\end{eqnarray*}
|
||||
\begin{align}
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
|
||||
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
Therefore, in order to solve the modes, we need to compute the
|
||||
so we reduced the initial scattering problem to one involving only the field
|
||||
expansion coefficients from a single unit cell, but we need to compute
|
||||
the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
|
@ -208,23 +300,272 @@ lattice Fourier transform
|
|||
of the translation operator,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
evaluation of which is possible but quite non-trivial due to the infinite
|
||||
lattice sum, so we explain it separately in Sect.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "subsec:W operator evaluation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As in the case of a finite system, eq.
|
||||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
Eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be used to calculate electromagnetic response of the structure to external
|
||||
quasiperiodic driving field – most notably a plane wave.
|
||||
However, the non-trivial solutions of the equation with right hand side
|
||||
(i.e.
|
||||
the external driving) set to zero,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
describes the
|
||||
\emph on
|
||||
lattice modes.
|
||||
|
||||
\emph default
|
||||
Non-trivial solutions to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
exist if the matrix on the left-hand side
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
|
||||
\end_inset
|
||||
|
||||
is singular – this condition gives the
|
||||
\emph on
|
||||
dispersion relation
|
||||
\emph default
|
||||
for the periodic structure.
|
||||
Note that in realistic (lossy) systems, at least one of the pair
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
will acquire complex values.
|
||||
The solution
|
||||
\begin_inset Formula $\outcoeffp{\vect 0}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is then obtained as the right
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CHECK!
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
singular vector of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
corresponding to the zero singular value.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Numerical solution
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In practice, equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
is solved in the same way as eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
in the multipole degree truncated form.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The lattice mode problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
is (after multipole degree truncation) solved by finding
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
for which the matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
has a zero singular value.
|
||||
A naïve approach to do that is to sample a volume with a grid in the
|
||||
\begin_inset Formula $\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
space, performing a singular value decomposition of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
at each point and finding where the lowest singular value of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is close enough to zero.
|
||||
However, this approach is quite expensive, for
|
||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
has to be evaluated for each
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
pair separately (unlike the original finite case
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
translation operator
|
||||
\begin_inset Formula $\trops$
|
||||
\end_inset
|
||||
|
||||
, which, for a given geometry, depends only on frequency).
|
||||
Therefore, a much more efficient approach to determine the photonic bands
|
||||
is to sample the
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
-space (a whole Brillouin zone or its part) and for each fixed
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
to find a corresponding frequency
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
with zero singular value of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
using a minimisation algorithm (two- or one-dimensional, depending on whether
|
||||
one needs the exact complex-valued
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
or whether the its real-valued approximation is satisfactory).
|
||||
Typically, a good initial guess for
|
||||
\begin_inset Formula $\omega\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is obtained from the empty lattice approximation,
|
||||
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
|
||||
\end_inset
|
||||
|
||||
(modulo lattice points; TODO write this a clean way).
|
||||
A somehow challenging step is to distinguish the different bands that can
|
||||
all be very close to the empty lattice approximation, especially if the
|
||||
particles in the systems are small.
|
||||
In high-symmetry points of the Brilloin zone, this can be solved by factorising
|
||||
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
into irreducible representations
|
||||
\begin_inset Formula $\Gamma_{i}$
|
||||
\end_inset
|
||||
|
||||
and performing the minimisation in each irrep separately, cf.
|
||||
Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Symmetries"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, and using the different
|
||||
\begin_inset Formula $\omega_{\Gamma_{i}}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
to obtain the initial guesses for the nearby points
|
||||
\begin_inset Formula $\vect k+\delta\vect k$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Computing the Fourier sum of the translation operator
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:W operator evaluation"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
||||
\lang english
|
||||
Computing the Fourier sum of the translation operator
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
The problem evaluating
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -233,20 +574,22 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
is the asymptotic behaviour of the translation operator,
|
||||
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$
|
||||
\end_inset
|
||||
|
||||
that makes the convergence of the sum quite problematic for any
|
||||
that does not in the strict sense converge for any
|
||||
\begin_inset Formula $d>1$
|
||||
\end_inset
|
||||
|
||||
-dimensional lattice.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Foot
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
Note that
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
@ -258,16 +601,20 @@ Note that
|
|||
|
||||
\end_inset
|
||||
|
||||
In electrostatics, one can solve this problem with Ewald summation.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
In electrostatics, this problem can be solved with Ewald summation [TODO
|
||||
REF].
|
||||
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
||||
space, will perhaps decay fast in the Fourier space.
|
||||
I use the same idea here, but everything will be somehow harder than in
|
||||
electrostatics.
|
||||
We use the same idea here, but the technical details are more complicated
|
||||
than in electrostatics.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
Let us re-express the sum in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -276,11 +623,14 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
in terms of integral with a delta comb
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\basis}[1]{\mathfrak{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
|
||||
|
@ -382,8 +732,6 @@ W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\lang english
|
||||
Factor
|
||||
\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
|
||||
\end_inset
|
||||
|
@ -416,8 +764,6 @@ whole
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
However, Fourier transform is linear, so we can in principle separate
|
||||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
@ -463,7 +809,7 @@ reference "eq:W definition"
|
|||
|
||||
\end_inset
|
||||
|
||||
and legendre
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W sum in reciprocal space"
|
||||
|
@ -484,7 +830,178 @@ W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\bas
|
|||
|
||||
\end_inset
|
||||
|
||||
where both sums should converge nicely.
|
||||
where both sums expected to converge nicely.
|
||||
We note that the elements of the translation operators
|
||||
\begin_inset Formula $\tropr,\trops$
|
||||
\end_inset
|
||||
|
||||
in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:translation operator"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be rewritten as linear combinations of expressions
|
||||
\begin_inset Formula $\ush{\nu}{\mu}\left(\uvec d\right)j_{n}\left(d\right),\ush{\nu}{\mu}\left(\uvec d\right)h_{n}^{(1)}\left(d\right)$
|
||||
\end_inset
|
||||
|
||||
(TODO WRITE THEM EXPLICITLY IN THIS FORM), respectively, hence if we are
|
||||
able evaluate the lattice sums sums
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
then by linearity, we can get the
|
||||
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
operator as well.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
TODO ADD MOROZ AND OTHER REFS HERE.
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "linton_one-_2009"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
offers an exponentially convergent Ewald-type summation method for
|
||||
\begin_inset Formula $\sigma_{\nu}^{\mu}\left(\vect k\right)=\sigma_{\nu}^{\mu(\mathrm{S})}\left(\vect k\right)+\sigma_{\nu}^{\mu(\mathrm{L})}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Here we rewrite them in a form independent on the convention used for spherical
|
||||
harmonics (as long as they are complex
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
lepší formulace
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
The short-range part reads (UNIFY INDEX NOTATION)
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi\\
|
||||
+\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m},\label{eq:Ewald in 3D short-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
|
||||
\begin_inset Formula $\sigma_{n}^{m(0)}$
|
||||
\end_inset
|
||||
|
||||
?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
and the long-range part (FIXME, this is the 2D version; include the 1D and
|
||||
3D lattice expressions as well)
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)=-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:Ewald in 3D long-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
is TODO,
|
||||
\begin_inset Formula $\beta_{pq}$
|
||||
\end_inset
|
||||
|
||||
is TODO,
|
||||
\begin_inset Formula $\Gamma_{j,pq}$
|
||||
\end_inset
|
||||
|
||||
is TODO and
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is a real parameter that determines the pace of convergence of both parts.
|
||||
The larger
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is, the faster
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
converges but the slower
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
converges.
|
||||
Therefore (based on the lattice geometry) it has to be adjusted in a way
|
||||
that a reasonable amount of terms needs to be evaluated numerically from
|
||||
both
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Generally, a good choice for
|
||||
\begin_inset Formula $\eta$
|
||||
\end_inset
|
||||
|
||||
is TODO; in order to achieve accuracy TODO, one has to evaluate the terms
|
||||
on TODO lattice points.
|
||||
(I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE
|
||||
THEM?)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In practice, the integrals in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Ewald in 3D short-range part"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be easily evaluated by numerical quadrature and the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
-functions using the series TODO and TODO from DLMF.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
|
@ -1,29 +1,37 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language english
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\font_roman_osf true
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures false
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\float_placement class
|
||||
\float_alignment class
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
|
@ -58,6 +66,8 @@
|
|||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
|
@ -66,10 +76,14 @@
|
|||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
|
@ -81,6 +95,159 @@
|
|||
|
||||
\begin_layout Section
|
||||
Introduction
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Introduction"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The problem of electromagnetic response of a system consisting of many compact
|
||||
scatterers in various geometries, and its numerical solution, is relevant
|
||||
to many branches of nanophotonics (TODO refs).
|
||||
The most commonly used general approaches used in computational electrodynamics
|
||||
, such as the finite difference time domain (FDTD) method or the finite
|
||||
element method (FEM), are very often unsuitable for simulating systems
|
||||
with larger number of scatterers due to their computational complexity.
|
||||
Therefore, a common (frequency-domain) approach to get an approximate solution
|
||||
of the scattering problem for many small particles has been the coupled
|
||||
dipole approximation (CDA) where individual scatterers are reduced to electric
|
||||
dipoles (characterised by a polarisability tensor) and coupled to each
|
||||
other through Green's functions.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
CDA is easy to implement and has favorable computational complexity but
|
||||
suffers from at least two fundamental drawbacks.
|
||||
The obvious one is that the dipole approximation is too rough for particles
|
||||
with diameter larger than a small fraction of the wavelength.
|
||||
The other one, more subtle, manifests itself in photonic crystal-like structure
|
||||
s used in nanophotonics: there are modes in which the particles' electric
|
||||
dipole moments completely vanish due to symmetry, regardless of how small
|
||||
the particles are, and the excitations have quadrupolar or higher-degree
|
||||
multipolar character.
|
||||
These modes typically appear at the band edges where interesting phenomena
|
||||
such as lasing or Bose-Einstein condensation have been observed – and CDA
|
||||
by definition fails to capture such modes.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The natural way to overcome both limitations of CDA mentioned above is to
|
||||
include higher multipoles into account.
|
||||
Instead of polarisability tensor, the scattering properties of an individual
|
||||
particle are then described a more general
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, and different particles' multipole excitations are coupled together
|
||||
via translation operators, a generalisation of the Green's functions in
|
||||
CDA.
|
||||
This is the idea behind the
|
||||
\emph on
|
||||
multiple-scattering
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix method
|
||||
\emph default
|
||||
(MSTMM) (TODO a.k.a something??), and it has been implemented previously for
|
||||
a limited subset of problems (TODO refs and list the limitations of the
|
||||
available).
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO přestože blablaba, moc se to nepoužívalo, protože je težké udělat to
|
||||
správně.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Due to the limitations of the existing available codes, we have been developing
|
||||
our own implementation of MSTMM, which we have used in several previous
|
||||
works studying various physical phenomena in plasmonic nanoarrays (TODO
|
||||
examples with refs).
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Hereby we release our MSTMM implementation, the
|
||||
\emph on
|
||||
QPMS Photonic Multiple Scattering
|
||||
\emph default
|
||||
suite, as an open source software under the GNU General Public License
|
||||
version 3.
|
||||
(TODO refs to the code repositories.) QPMS allows for linear optics simulations
|
||||
of arbitrary sets of compact scatterers in isotropic media.
|
||||
The features include computations of electromagnetic response to external
|
||||
driving, the related cross sections, and finding resonances of finite structure
|
||||
s.
|
||||
Moreover, in QPMS we extensively employ group theory to exploit the physical
|
||||
symmetries of the system to further reduce the demands on computational
|
||||
resources, enabling to simulate even larger systems.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO put a specific example here of how large system we are able to simulate?)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Although systems of large
|
||||
\emph on
|
||||
finite
|
||||
\emph default
|
||||
number of scatterers are the area where MSTMM excels the most—simply because
|
||||
other methods fail due to their computational complexity—we also extended
|
||||
the method onto infinite periodic systems (photonic crystals); this can
|
||||
be used for quickly evaluating dispersions of such structures and also
|
||||
their topological invariants (TODO).
|
||||
The QPMS suite contains a core C library, Python bindings and several utilities
|
||||
for routine computations, such as TODO.
|
||||
It includes extensive Doxygen documentation, together with description
|
||||
of the API, making extending and customising the code easy.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The current paper is organised as follows: Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Finite"
|
||||
|
||||
\end_inset
|
||||
|
||||
is devoted to MSTMM theory for finite systems, in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Infinite"
|
||||
|
||||
\end_inset
|
||||
|
||||
we develop the theory for infinite periodic structures.
|
||||
Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Applications"
|
||||
|
||||
\end_inset
|
||||
|
||||
demonstrates some basic practical results that can be obtained using QPMS.
|
||||
Finally, in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Comparison"
|
||||
|
||||
\end_inset
|
||||
|
||||
we comment on the computational complexity of MSTMM in comparison to other
|
||||
methods.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,426 @@
|
|||
|
||||
@book{bohren_absorption_1983,
|
||||
title = {Absorption and Scattering of Light by Small Particles},
|
||||
abstract = {Not Available},
|
||||
urldate = {2014-05-09},
|
||||
url = {http://adsabs.harvard.edu/abs/1983asls.book.....B},
|
||||
author = {Bohren, Craig F. and Huffman, Donald R.},
|
||||
year = {1983},
|
||||
keywords = {Particles,LIGHT SCATTERING,ABSORPTION,DUST,THEORY},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/HES6WJTP/(Wiley science paperback series) Craig F. Bohren, Donald R. Huffman-Absorption and scattering of light by small particles-Wiley-VCH (1998).djvu}
|
||||
}
|
||||
|
||||
@misc{SCUFF2,
|
||||
title = {{{SCUFF}}-{{EM}}},
|
||||
url = {http://homerreid.dyndns.org/scuff-EM/},
|
||||
author = {Reid, Homer},
|
||||
year = {2018},
|
||||
note = {http://github.com/homerreid/scuff-EM}
|
||||
}
|
||||
|
||||
@article{xu_calculation_1996,
|
||||
title = {Calculation of the {{Addition Coefficients}} in {{Electromagnetic Multisphere}}-{{Scattering Theory}}},
|
||||
volume = {127},
|
||||
issn = {0021-9991},
|
||||
abstract = {One of the most intractable problems in electromagnetic multisphere-scattering theory is the formulation and evaluation of vector addition coefficients introduced by the addition theorems for vector spherical harmonics. This paper presents an efficient approach for the calculation of both scalar and vector translational addition coefficients, which is based on fast evaluation of the Gaunt coefficients. The paper also rederives the analytical expressions for the vector translational addition coefficients and discusses the strengths and limitations of other formulations and numerical techniques found in the literature. Numerical results from the formulation derived in this paper agree with those of a previously published recursion scheme that completely avoids the use of the Gaunt coefficients, but the method of direct calculation proposed here reduces the computing time by a factor of 4\textendash{}6.},
|
||||
number = {2},
|
||||
urldate = {2015-11-22},
|
||||
journal = {Journal of Computational Physics},
|
||||
doi = {10.1006/jcph.1996.0175},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S0021999196901758},
|
||||
author = {Xu, Yu-lin},
|
||||
month = sep,
|
||||
year = {1996},
|
||||
pages = {285-298},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/8B2TWTJ2/1-s2.0-S0021999197956874-main (2).pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/NCD6BBNZ/Xu - 1996 - Calculation of the Addition Coefficients in Electr.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/NDSF7KI2/S0021999196901758.html}
|
||||
}
|
||||
|
||||
@article{xu_efficient_1998,
|
||||
title = {Efficient {{Evaluation}} of {{Vector Translation Coefficients}} in {{Multiparticle Light}}-{{Scattering Theories}}},
|
||||
volume = {139},
|
||||
issn = {0021-9991},
|
||||
abstract = {Vector addition theorems are a necessary ingredient in the analytical solution of electromagnetic multiparticle-scattering problems. These theorems include a large number of vector addition coefficients. There exist three basic types of analytical expressions for vector translation coefficients: Stein's (Quart. Appl. Math.19, 15 (1961)), Cruzan's (Quart. Appl. Math.20, 33 (1962)), and Xu's (J. Comput. Phys.127, 285 (1996)). Stein's formulation relates vector translation coefficients with scalar translation coefficients. Cruzan's formulas use the Wigner 3jm symbol. Xu's expressions are based on the Gaunt coefficient. Since the scalar translation coefficient can also be expressed in terms of the Gaunt coefficient, the key to the expeditious and reliable calculation of vector translation coefficients is the fast and accurate evaluation of the Wigner 3jm symbol or the Gaunt coefficient. We present highly efficient recursive approaches to accurately evaluating Wigner 3jm symbols and Gaunt coefficients. Armed with these recursive approaches, we discuss several schemes for the calculation of the vector translation coefficients, using the three general types of formulation, respectively. Our systematic test calculations show that the three types of formulas produce generally the same numerical results except that the algorithm of Stein's type is less accurate in some particular cases. These extensive test calculations also show that the scheme using the formulation based on the Gaunt coefficient is the most efficient in practical computations.},
|
||||
number = {1},
|
||||
urldate = {2015-11-18},
|
||||
journal = {Journal of Computational Physics},
|
||||
doi = {10.1006/jcph.1997.5867},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S0021999197958678},
|
||||
author = {Xu, Yu-lin},
|
||||
month = jan,
|
||||
year = {1998},
|
||||
pages = {137-165},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/STV5263F/Xu - 1998 - Efficient Evaluation of Vector Translation Coeffic.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/VMGZRSAA/S0021999197958678.html}
|
||||
}
|
||||
|
||||
@book{mishchenko_light_1999-1,
|
||||
title = {Light {{Scattering}} by {{Nonspherical Particles}}: {{Theory}}, {{Measurements}}, and {{Applications}}},
|
||||
isbn = {978-0-08-051020-0},
|
||||
shorttitle = {Light {{Scattering}} by {{Nonspherical Particles}}},
|
||||
abstract = {There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important.The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities.This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this importantresearch field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering.* The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications* Individual chapters are written by leading experts in respective areas* Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals* Consistent use of unified definitions and notation makes the book a coherent volume* An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles* Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web* Extensively illustrated with over 200 figures, 4 in color},
|
||||
language = {en},
|
||||
publisher = {{Academic Press}},
|
||||
author = {Mishchenko, Michael I. and Hovenier, Joachim W. and Travis, Larry D.},
|
||||
month = sep,
|
||||
year = {1999},
|
||||
keywords = {Science / Physics / General,Science / Applied Sciences,Science / Earth Sciences / Meteorology \& Climatology,Science / Physics / Geophysics,Science / Earth Sciences / Oceanography,Science / Earth Sciences / General}
|
||||
}
|
||||
|
||||
@article{mackowski_calculation_1996,
|
||||
title = {Calculation of the {{T}} Matrix and the Scattering Matrix for Ensembles of Spheres},
|
||||
volume = {13},
|
||||
issn = {1084-7529, 1520-8532},
|
||||
language = {en},
|
||||
number = {11},
|
||||
urldate = {2015-11-09},
|
||||
journal = {Journal of the Optical Society of America A},
|
||||
doi = {10.1364/JOSAA.13.002266},
|
||||
url = {https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-13-11-2266},
|
||||
author = {Mackowski, Daniel W. and Mishchenko, Michael I.},
|
||||
month = nov,
|
||||
year = {1996},
|
||||
pages = {2266},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/V59UV9H9/josaa-13-11-2266.pdf}
|
||||
}
|
||||
|
||||
@misc{mackowski_mstm_2013,
|
||||
title = {{{MSTM}} 3.0: {{A}} Multiple Sphere {{T}} -Matrix {{FORTRAN}} Code for Use on Parallel Computer Clusters},
|
||||
url = {http://www.eng.auburn.edu/~dmckwski/scatcodes/},
|
||||
author = {Mackowski, Daniel W.},
|
||||
year = {2013},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/RQMQMC7H/mstm-manual-2013-v3.0.pdf}
|
||||
}
|
||||
|
||||
@book{jackson_classical_1998,
|
||||
address = {{New York}},
|
||||
edition = {3 edition},
|
||||
title = {Classical {{Electrodynamics Third Edition}}},
|
||||
isbn = {978-0-471-30932-1},
|
||||
abstract = {A revision of the defining book covering the physics and classical mathematics necessary to understand electromagnetic fields in materials and at surfaces and interfaces. The third edition has been revised to address the changes in emphasis and applications that have occurred in the past twenty years.},
|
||||
language = {English},
|
||||
publisher = {{Wiley}},
|
||||
author = {Jackson, John David},
|
||||
month = aug,
|
||||
year = {1998},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/3BWPD4BK/John David Jackson-Classical Electrodynamics-Wiley (1999).djvu}
|
||||
}
|
||||
|
||||
@misc{kristensson_spherical_2014,
|
||||
title = {Spherical {{Vector Waves}}},
|
||||
urldate = {2014-05-20},
|
||||
url = {http://www.eit.lth.se/fileadmin/eit/courses/eit080f/Literature/book.pdf},
|
||||
author = {Kristensson, Gerhard},
|
||||
month = jan,
|
||||
year = {2014},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/7MVDRPF2/Kristensson - 2014 - Spherical Vector Waves.pdf}
|
||||
}
|
||||
|
||||
@incollection{mishchenko_t-matrix_1999,
|
||||
title = {T-Matrix {{Method}} and {{Its Applications}}},
|
||||
isbn = {978-0-08-051020-0},
|
||||
abstract = {There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important.The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities.This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this importantresearch field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering.* The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications* Individual chapters are written by leading experts in respective areas* Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals* Consistent use of unified definitions and notation makes the book a coherent volume* An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles* Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web* Extensively illustrated with over 200 figures, 4 in color},
|
||||
language = {en},
|
||||
booktitle = {Light {{Scattering}} by {{Nonspherical Particles}}: {{Theory}}, {{Measurements}}, and {{Applications}}},
|
||||
publisher = {{Academic Press}},
|
||||
author = {Mishchenko, Michael I. and {Travis, Larry D.} and Macke, Andreas},
|
||||
editor = {Mishchenko, Michael I. and Hovenier, Joachim W. and Travis, Larry D.},
|
||||
month = sep,
|
||||
year = {1999},
|
||||
keywords = {Science / Physics / General,Science / Applied Sciences,Science / Earth Sciences / Meteorology \& Climatology,Science / Physics / Geophysics,Science / Earth Sciences / Oceanography,Science / Earth Sciences / General},
|
||||
pages = {147-172}
|
||||
}
|
||||
|
||||
@article{schulz_point-group_1999,
|
||||
title = {Point-Group Symmetries in Electromagnetic Scattering},
|
||||
volume = {16},
|
||||
issn = {1084-7529, 1520-8532},
|
||||
language = {en},
|
||||
number = {4},
|
||||
urldate = {2016-08-04},
|
||||
journal = {Journal of the Optical Society of America A},
|
||||
doi = {10.1364/JOSAA.16.000853},
|
||||
url = {https://www.osapublishing.org/abstract.cfm?URI=josaa-16-4-853},
|
||||
author = {Schulz, F. Michael and Stamnes, Knut and Stamnes, J. J.},
|
||||
month = apr,
|
||||
year = {1999},
|
||||
pages = {853},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/X9X48A6G/josaa-16-4-853.pdf}
|
||||
}
|
||||
|
||||
@article{mishchenko_t-matrix_1994,
|
||||
title = {T-Matrix Computations of Light Scattering by Large Spheroidal Particles},
|
||||
volume = {109},
|
||||
issn = {0030-4018},
|
||||
abstract = {It is well known that T-matrix computations of light scattering by nonspherical particles may suffer from the ill-conditionality of the process of matrix inversion, which has precluded calculations for particle size parameters larger than about 25. It is demonstrated that calculating the T-matrix using extended-precision instead of double-precision floating-point variables is an effective approach for suppressing the numerical instability in computations for spheroids and allows one to increase the maximum particle size parameter for which T-matrix computations converge by as significant a factor as 2\textendash{}2.7. Yet this approach requires only a negligibly small extra memory, an affordable increase in CPU time consumption, and practically no additional programming effort. As a result, the range of particle size parameters, for which rigorous T-matrix computations of spheroidal scattering can be performed, now covers a substantial fraction of the gap between the domains of applicability of the Rayleigh and geometrical optics approximations.},
|
||||
number = {1\textendash{}2},
|
||||
urldate = {2017-01-18},
|
||||
journal = {Optics Communications},
|
||||
doi = {10.1016/0030-4018(94)90731-5},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/0030401894907315},
|
||||
author = {Mishchenko, Michael I. and Travis, Larry D.},
|
||||
month = jun,
|
||||
year = {1994},
|
||||
pages = {16-21},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/FT8KN354/mishchenko1994.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/TB425HGN/0030401894907315.html}
|
||||
}
|
||||
|
||||
@article{mishchenko_t-matrix_1996,
|
||||
series = {Light {{Scattering}} by {{Non}}-{{Spherical Particles}}},
|
||||
title = {T-Matrix Computations of Light Scattering by Nonspherical Particles: {{A}} Review},
|
||||
volume = {55},
|
||||
issn = {0022-4073},
|
||||
shorttitle = {T-Matrix Computations of Light Scattering by Nonspherical Particles},
|
||||
abstract = {We review the current status of Waterman's T-matrix approach which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations. Specifically, we discuss the analytical method for computing orientationally-averaged light-scattering characteristics for ensembles of nonspherical particles, the methods for overcoming the numerical instability in calculating the T matrix for single nonspherical particles with large size parameters and/or extreme geometries, and the superposition approach for computing light scattering by composite/aggregated particles. Our discussion is accompanied by multiple numerical examples demonstrating the capabilities of the T-matrix approach and showing effects of nonsphericity of simple convex particles (spheroids) on light scattering.},
|
||||
number = {5},
|
||||
urldate = {2017-01-18},
|
||||
journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
|
||||
doi = {10.1016/0022-4073(96)00002-7},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/0022407396000027},
|
||||
author = {Mishchenko, Michael I. and Travis, Larry D. and Mackowski, Daniel W.},
|
||||
month = may,
|
||||
year = {1996},
|
||||
pages = {535-575},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/8EA7QMDG/Mishchenko et al. - 1996 - T-matrix computations of light scattering by nonsp.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/HNWF8F6R/0022407396000027.html}
|
||||
}
|
||||
|
||||
@article{hakala_lasing_2017,
|
||||
title = {Lasing in Dark and Bright Modes of a Finite-Sized Plasmonic Lattice},
|
||||
volume = {8},
|
||||
copyright = {\textcopyright{} 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.},
|
||||
issn = {2041-1723},
|
||||
abstract = {Plasmonic dark modes are promising candidates for lasing applications. Here, Hakalaet al. show lasing at visible wavelengths in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules, opening up a route to utilization of all modes of plasmonic lattices.},
|
||||
language = {en},
|
||||
urldate = {2017-03-28},
|
||||
journal = {Nature Communications},
|
||||
doi = {10.1038/ncomms13687},
|
||||
url = {http://www.nature.com/ncomms/2017/170103/ncomms13687/full/ncomms13687.html},
|
||||
author = {Hakala, T. K. and Rekola, H. T. and V{\"a}kev{\"a}inen, A. I. and Martikainen, J.-P. and Ne{\v c}ada, M. and Moilanen, A. J. and T{\"o}rm{\"a}, P.},
|
||||
month = jan,
|
||||
year = {2017},
|
||||
pages = {13687},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/73KCXGAP/ncomms13687.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/J6R8MHBH/ncomms13687-s1.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/X4PNEUQN/ncomms13687.html}
|
||||
}
|
||||
|
||||
@article{mackowski_effective_2001,
|
||||
series = {Light {{Scattering}} by {{Non}}-{{Spherical Particles}}},
|
||||
title = {An Effective Medium Method for Calculation of the {{T}} Matrix of Aggregated Spheres},
|
||||
volume = {70},
|
||||
issn = {0022-4073},
|
||||
abstract = {An effective medium approach is developed for describing the radiative scattering characteristics of large-scale clusters of spheres. The formulation assumes that the waves exciting each sphere in the cluster can be described by a regular vector harmonic expansion, centered about a common origin of the cluster, and characterized by an effective propagation constant mek. By combining this description with the multiple sphere interaction equations a `homogeneous' T matrix of the cluster is derived, which is analogous to using the effective propagation constant models of the Varadans in conjunction with Waterman's EBCM. However, it is shown that the homogeneous T matrix will not automatically satisfy energy conservation because it cannot account for dependent scattering effects among the spheres. A `discrete' formulation of the T matrix is then developed which retains the effective medium description of the exciting field yet provides for energy conservation. Illustrative calculations show that the effective medium T matrix can provide accurate predictions of the cross sections and scattering matrices of clusters containing a large number of uniformly packed spheres, yet this approximation uses a fraction of the computational time required for an exact solution.},
|
||||
number = {4\textendash{}6},
|
||||
urldate = {2017-06-05},
|
||||
journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
|
||||
doi = {10.1016/S0022-4073(01)00022-X},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S002240730100022X},
|
||||
author = {Mackowski, Daniel W.},
|
||||
month = aug,
|
||||
year = {2001},
|
||||
pages = {441-464},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/9E7R7IRX/Mackowski - 2001 - An effective medium method for calculation of the .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/D75CJ78C/S002240730100022X.html}
|
||||
}
|
||||
|
||||
@book{dresselhaus_group_2008,
|
||||
title = {Group {{Theory}}: {{Application}} to the {{Physics}} of {{Condensed Matter}}},
|
||||
isbn = {978-3-540-32899-5},
|
||||
abstract = {Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides...},
|
||||
urldate = {2017-10-31},
|
||||
publisher = {{Springer, Berlin, Heidelberg}},
|
||||
url = {//www.springer.com/us/book/9783540328971},
|
||||
author = {Dresselhaus, Mildred S. and Dresselhaus, Gene and Jorio, Ado},
|
||||
year = {2008},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/GFGPVB4A/Mildred_S._Dresselhaus,_Gene_Dresselhaus,_Ado_Jorio_Group_theory_application_to_the_physics_of_condensed_matter.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/E78682CJ/9783540328971.html}
|
||||
}
|
||||
|
||||
@article{linton_lattice_2010,
|
||||
title = {Lattice {{Sums}} for the {{Helmholtz Equation}}},
|
||||
volume = {52},
|
||||
issn = {0036-1445},
|
||||
abstract = {A survey of different representations for lattice sums for the Helmholtz equation is made. These sums arise naturally when dealing with wave scattering by periodic structures. One of the main objectives is to show how the various forms depend on the dimension d of the underlying space and the lattice dimension \$d\_\textbackslash{}Lambda\$. Lattice sums are related to, and can be calculated from, the quasi-periodic Green's function and this object serves as the starting point of the analysis.},
|
||||
number = {4},
|
||||
journal = {SIAM Rev.},
|
||||
doi = {10.1137/09075130X},
|
||||
url = {http://epubs.siam.org/doi/10.1137/09075130X},
|
||||
author = {Linton, C.},
|
||||
month = jan,
|
||||
year = {2010},
|
||||
pages = {630-674},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/T86ATKYB/09075130x.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ETB8X4S9/09075130X.html}
|
||||
}
|
||||
|
||||
@book{bradley_mathematical_1972,
|
||||
title = {The Mathematical Theory of Symmetry in Solids; Representation Theory for Point Groups and Space Groups},
|
||||
isbn = {978-0-19-851920-1},
|
||||
urldate = {2018-07-25},
|
||||
publisher = {{Clarendon Press, Oxford}},
|
||||
url = {http://gen.lib.rus.ec/book/index.php?md5=8539E3400CF65B6CC4FAC71B9DF286C5},
|
||||
author = {Bradley, C. J. and Cracknell, A. P.},
|
||||
year = {1972},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/SB5ZN5WH/C.J. Bradley, A.P. Cracknell - The mathematical theory of symmetry in solids_ representation theory for point groups and space groups (1972, Clarendon Press).djvu}
|
||||
}
|
||||
|
||||
@article{moroz_quasi-periodic_2006,
|
||||
title = {Quasi-Periodic {{Green}}'s Functions of the {{Helmholtz}} and {{Laplace}} Equations},
|
||||
volume = {39},
|
||||
issn = {0305-4470},
|
||||
abstract = {A classical problem of free-space Green's function G 0{$\Lambda$} representations of the Helmholtz equation is studied in various quasi-periodic cases, i.e., when an underlying periodicity is imposed in less dimensions than is the dimension of an embedding space. Exponentially convergent series for the free-space quasi-periodic G 0{$\Lambda$} and for the expansion coefficients D L of G 0{$\Lambda$} in the basis of regular (cylindrical in two dimensions and spherical in three dimension (3D)) waves, or lattice sums, are reviewed and new results for the case of a one-dimensional (1D) periodicity in 3D are derived. From a mathematical point of view, a derivation of exponentially convergent representations for Schl{\"o}milch series of cylindrical and spherical Hankel functions of any integer order is accomplished. Exponentially convergent series for G 0{$\Lambda$} and lattice sums D L hold for any value of the Bloch momentum and allow G 0{$\Lambda$} to be efficiently evaluated also in the periodicity plane. The quasi-periodic Green's functions of the Laplace equation are obtained from the corresponding representations of G 0{$\Lambda$} of the Helmholtz equation by taking the limit of the wave vector magnitude going to zero. The derivation of relevant results in the case of a 1D periodicity in 3D highlights the common part which is universally applicable to any of remaining quasi-periodic cases. The results obtained can be useful for the numerical solution of boundary integral equations for potential flows in fluid mechanics, remote sensing of periodic surfaces, periodic gratings, and infinite arrays of resonators coupled to a waveguide, in many contexts of simulating systems of charged particles, in molecular dynamics, for the description of quasi-periodic arrays of point interactions in quantum mechanics, and in various ab initio first-principle multiple-scattering theories for the analysis of diffraction of classical and quantum waves.},
|
||||
language = {en},
|
||||
number = {36},
|
||||
urldate = {2018-08-14},
|
||||
journal = {J. Phys. A: Math. Gen.},
|
||||
doi = {10.1088/0305-4470/39/36/009},
|
||||
url = {http://stacks.iop.org/0305-4470/39/i=36/a=009},
|
||||
author = {Moroz, Alexander},
|
||||
year = {2006},
|
||||
pages = {11247},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/268RXLJ4/Moroz - 2006 - Quasi-periodic Green's functions of the Helmholtz .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/MGA5XR44/dlserr.pdf}
|
||||
}
|
||||
|
||||
@article{linton_one-_2009,
|
||||
title = {One- and Two-Dimensional Lattice Sums for the Three-Dimensional {{Helmholtz}} Equation},
|
||||
volume = {228},
|
||||
issn = {0021-9991},
|
||||
abstract = {The accurate and efficient computation of lattice sums for the three-dimensional Helmholtz equation is considered for the cases where the underlying lattice is one- or two-dimensional. We demonstrate, using careful numerical computations, that the reduction method, in which the sums for a two-dimensional lattice are expressed as a sum of one-dimensional lattice sums leads to an order-of-magnitude improvement in performance over the well-known Ewald method. In the process we clarify and improve on a number of results originally formulated by Twersky in the 1970s.},
|
||||
number = {6},
|
||||
urldate = {2018-08-14},
|
||||
journal = {Journal of Computational Physics},
|
||||
doi = {10.1016/j.jcp.2008.11.013},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/S0021999108005962},
|
||||
author = {Linton, C. M. and Thompson, I.},
|
||||
month = apr,
|
||||
year = {2009},
|
||||
keywords = {Helmholtz equation,Ewald summation,Clausen function,Lattice reduction,Lattice sum,Schlömilch series},
|
||||
pages = {1815-1829},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/YMRZHBY4/Linton ja Thompson - 2009 - One- and two-dimensional lattice sums for the thre.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/Z8CFQ6S9/S0021999108005962.html}
|
||||
}
|
||||
|
||||
@book{olver_nist_2010,
|
||||
edition = {1 Pap/Cdr},
|
||||
title = {{{NIST}} Handbook of Mathematical Functions},
|
||||
isbn = {978-0-521-14063-8},
|
||||
urldate = {2018-08-20},
|
||||
publisher = {{Cambridge University Press}},
|
||||
url = {http://gen.lib.rus.ec/book/index.php?md5=7750A842DAAE07EBE30D597EB1352408},
|
||||
author = {Olver, Frank W. J. and Lozier, Daniel W. and Boisvert, Ronald F. and Clark, Charles W.},
|
||||
year = {2010},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZJ5LBQ8W/Olver ym. - 2010 - NIST handbook of mathematical functions.pdf}
|
||||
}
|
||||
|
||||
@article{NIST:DLMF,
|
||||
title = {{{NIST Digital Library}} of {{Mathematical Functions}}},
|
||||
url = {http://dlmf.nist.gov/},
|
||||
key = {DLMF},
|
||||
note = {F.~W.~J. Olver, A.~B. Olde Daalhuis, D.~W. Lozier, B.~I. Schneider, R.~F. Boisvert, C.~W. Clark, B.~R. Miller and B.~V. Saunders, eds.}
|
||||
}
|
||||
|
||||
@article{reid_efficient_2015,
|
||||
archivePrefix = {arXiv},
|
||||
eprinttype = {arxiv},
|
||||
eprint = {1307.2966},
|
||||
title = {Efficient {{Computation}} of {{Power}}, {{Force}}, and {{Torque}} in {{BEM Scattering Calculations}}},
|
||||
volume = {63},
|
||||
issn = {0018-926X, 1558-2221},
|
||||
abstract = {We present concise, computationally efficient formulas for several quantities of interest -- including absorbed and scattered power, optical force (radiation pressure), and torque -- in scattering calculations performed using the boundary-element method (BEM) [also known as the method of moments (MOM)]. Our formulas compute the quantities of interest \textbackslash{}textit\{directly\} from the BEM surface currents with no need ever to compute the scattered electromagnetic fields. We derive our new formulas and demonstrate their effectiveness by computing power, force, and torque in a number of example geometries. Free, open-source software implementations of our formulas are available for download online.},
|
||||
number = {8},
|
||||
urldate = {2018-09-23},
|
||||
journal = {IEEE Transactions on Antennas and Propagation},
|
||||
doi = {10.1109/TAP.2015.2438393},
|
||||
url = {http://arxiv.org/abs/1307.2966},
|
||||
author = {Reid, M. T. Homer and Johnson, Steven G.},
|
||||
month = aug,
|
||||
year = {2015},
|
||||
keywords = {Physics - Classical Physics,Physics - Computational Physics},
|
||||
pages = {3588-3598},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/I2DXTKUF/Reid ja Johnson - 2015 - Efficient Computation of Power, Force, and Torque .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/LG7AVZDH/1307.html}
|
||||
}
|
||||
|
||||
@article{guo_lasing_2019,
|
||||
title = {Lasing at \${{K}}\$ {{Points}} of a {{Honeycomb Plasmonic Lattice}}},
|
||||
volume = {122},
|
||||
abstract = {We study lasing at the high-symmetry points of the Brillouin zone in a honeycomb plasmonic lattice. We use symmetry arguments to define singlet and doublet modes at the K points of the reciprocal space. We experimentally demonstrate lasing at the K points that is based on plasmonic lattice modes and two-dimensional feedback. By comparing polarization properties to T-matrix simulations, we identify the lasing mode as one of the singlets with an energy minimum at the K point enabling feedback. Our results offer prospects for studies of topological lasing in radiatively coupled systems.},
|
||||
number = {1},
|
||||
urldate = {2019-01-10},
|
||||
journal = {Phys. Rev. Lett.},
|
||||
doi = {10.1103/PhysRevLett.122.013901},
|
||||
url = {https://link.aps.org/doi/10.1103/PhysRevLett.122.013901},
|
||||
author = {Guo, R. and Ne{\v c}ada, M. and Hakala, T. K. and V{\"a}kev{\"a}inen, A. I. and T{\"o}rm{\"a}, P.},
|
||||
month = jan,
|
||||
year = {2019},
|
||||
pages = {013901},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/TDGW4CZ5/Guo ym. - 2019 - Lasing at $K$ Points of a Honeycomb Plasmonic Latt.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/8BW4R9F6/PhysRevLett.122.html}
|
||||
}
|
||||
|
||||
@article{mie_beitrage_1908,
|
||||
title = {Beitr{\"a}ge Zur {{Optik}} Tr{\"u}ber {{Medien}}, Speziell Kolloidaler {{Metall{\"o}sungen}}},
|
||||
volume = {330},
|
||||
copyright = {Copyright \textcopyright{} 1908 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim},
|
||||
issn = {1521-3889},
|
||||
language = {en},
|
||||
number = {3},
|
||||
urldate = {2014-11-30},
|
||||
journal = {Ann. Phys.},
|
||||
doi = {10.1002/andp.19083300302},
|
||||
url = {http://onlinelibrary.wiley.com/doi/10.1002/andp.19083300302/abstract},
|
||||
author = {Mie, Gustav},
|
||||
month = jan,
|
||||
year = {1908},
|
||||
pages = {377-445},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/RM9J9RYH/Mie - 1908 - Beiträge zur Optik trüber Medien, speziell kolloid.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/F5A7EX6R/abstract.html}
|
||||
}
|
||||
|
||||
@book{kristensson_scattering_2016,
|
||||
address = {{Edison, NJ}},
|
||||
title = {Scattering of {{Electromagnetic Waves}} by {{Obstacles}}},
|
||||
isbn = {978-1-61353-221-8},
|
||||
abstract = {This book is an introduction to some of the most important properties of electromagnetic waves and their interaction with passive materials and scatterers. The main purpose of the book is to give a theoretical treatment of these scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials. The scattering theory is also important in the theory of passive antennas, and this book gives several examples on this topic. Topics covered include an introduction to the basic equations used in scattering; the Green functions and dyadics; integral representation of fields; introductory scattering theory; scattering in the time domain; approximations and applications; spherical vector waves; scattering by spherical objects; the null-field approach; and propagation in stratified media. The book is organised along two tracks, which can be studied separately or together. Track 1 material is appropriate for a first reading of the textbook, while Track 2 contains more advanced material suited for the second reading and for reference. Exercises are included for each chapter.},
|
||||
language = {English},
|
||||
publisher = {{Scitech Publishing}},
|
||||
url = {http://gen.lib.rus.ec/book/index.php?md5=00CCB3E221E741ADDB2E236FD4A9F002},
|
||||
author = {Kristensson, Gerhard},
|
||||
month = jul,
|
||||
year = {2016},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZRYZ4KLK/Kristensson - 2016 - Scattering of Electromagnetic Waves by Obstacles.pdf}
|
||||
}
|
||||
|
||||
@article{ganesh_convergence_2012,
|
||||
title = {Convergence Analysis with Parameter Estimates for a Reduced Basis Acoustic Scattering {{T}}-Matrix Method},
|
||||
volume = {32},
|
||||
issn = {0272-4979},
|
||||
abstract = {Abstract. The celebrated truncated T-matrix method for wave propagation models belongs to a class of the reduced basis methods (RBMs), with the parameters bein},
|
||||
language = {en},
|
||||
number = {4},
|
||||
urldate = {2019-07-03},
|
||||
journal = {IMA J Numer Anal},
|
||||
doi = {10.1093/imanum/drr041},
|
||||
url = {https://academic.oup.com/imajna/article/32/4/1348/654510},
|
||||
author = {Ganesh, M. and Hawkins, S. C. and Hiptmair, R.},
|
||||
month = oct,
|
||||
year = {2012},
|
||||
pages = {1348-1374},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/2CRM9IEU/ganesh2012.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/KLKJBTZU/Ganesh ym. - 2012 - Convergence analysis with parameter estimates for .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/N5H8B7SF/654510.html}
|
||||
}
|
||||
|
||||
@book{chew_fast_2000,
|
||||
series = {Artech {{House Antennas}} and {{Propagation Library}}},
|
||||
title = {Fast and {{Efficient Algorithms}} in {{Computational Electromagnetics}}},
|
||||
isbn = {978-1-58053-152-8},
|
||||
urldate = {2019-07-31},
|
||||
publisher = {{Artech House Publishers}},
|
||||
url = {http://gen.lib.rus.ec/book/index.php?md5=2A7D2CE03DB8CFC14E7189E9A441F759},
|
||||
author = {Chew, Weng Cho and Jin, Jian-Ming and Michielssen, Eric and Song, Jiming},
|
||||
year = {2000}
|
||||
}
|
||||
|
||||
@article{pourjamal_lasing_2019,
|
||||
title = {Lasing in {{Ni Nanodisk Arrays}}},
|
||||
abstract = {Lasing in Ni Nanodisk Arrays},
|
||||
language = {en},
|
||||
urldate = {2019-07-31},
|
||||
journal = {ACS Nano},
|
||||
doi = {10.1021/acsnano.9b01006},
|
||||
url = {https://pubs.acs.org/doi/suppl/10.1021/acsnano.9b01006},
|
||||
author = {Pourjamal, Sara and Hakala, Tommi K. and Ne{\v c}ada, Marek and {Freire-Fern{\'a}ndez}, Francisco and Kataja, Mikko and Rekola, Heikki and Martikainen, Jani-Petri and T{\"o}rm{\"a}, P{\"a}ivi and van Dijken, Sebastiaan},
|
||||
month = apr,
|
||||
year = {2019},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/C4SN68I6/Pourjamal ym. - 2019 - Lasing in Ni Nanodisk Arrays.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/S6AU6FV9/acsnano.html}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue