diff --git a/notes/cylinderT.lyx b/notes/cylinderT.lyx index a4dc377..7069314 100644 --- a/notes/cylinderT.lyx +++ b/notes/cylinderT.lyx @@ -354,6 +354,53 @@ r & =\frac{h}{2\cos\left(\theta-\pi\right)}=-\frac{h}{2\cos\theta},\\ \end_inset +\end_layout + +\begin_layout Standard +Let's write VSWFs in terms of the power-normalised +\begin_inset Formula $p,\pi,\tau$ +\end_inset + + funs: +\begin_inset Formula +\begin{align*} +\vsh_{1lm} & =\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)e^{im\phi}\\ +\vsh_{2lm} & =\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)e^{im\phi}\\ +\vsh_{3lm} & =\sqrt{l\left(l+1\right)}p_{lm}e^{im\theta} +\end{align*} + +\end_inset + + +\begin_inset Formula +\begin{align*} +\vect y_{\kappa1lm} & =\underbrace{h_{l}^{\kappa}e^{im\phi}}_{c_{\kappa lm}^{1}}\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)\\ +\vect y_{\kappa2lm} & =\frac{1}{kr}e^{im\phi}\left(\frac{\ud\left(krh_{l}^{\kappa}\right)}{\ud\left(kr\right)}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+h_{l}^{\kappa}l\left(l+1\right)\uvec rp_{lm}\right)\\ + & =c_{\kappa lm}^{2}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+c_{\kappa lm}^{3}\uvec rp_{lm} +\end{align*} + +\end_inset + +The triple products than are (reminder: +\begin_inset Formula $\uvec{\nu}\left(\theta\right)=\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right))$ +\end_inset + +: +\begin_inset Formula +\begin{align*} +\left(\vect y_{\kappa1lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\tau_{l'm'}+\tau_{lm}\pi_{l'm'}\right)\\ +\left(\vect y_{\kappa1lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{2}\left(\pi_{lm}\pi_{l'm'}+\tau_{lm}\tau_{l'm'}\right)\\ + & +\sin\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{3}\left(-\tau_{lm}p_{l'm'}\right)\\ +\left(\vect y_{\kappa2lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\pi_{l'm'}-\tau_{lm}\tau_{l'm'}\right)\\ + & +\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{1}\left(p_{lm}\tau_{l'm'}\right)\\ +\left(\vect y_{\kappa2lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{2}\left(\tau_{lm}\pi_{l'm'}-\pi_{lm}\tau_{l'm'}\right)\\ + & -\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{2}p_{lm}\pi_{l'm'}\\ + & +\sin\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{3}\pi_{lm}p_{l'm'} +\end{align*} + +\end_inset + + \end_layout \begin_layout Standard