Bravais lattice type recognition

Former-commit-id: b33c30f31ff08780a60ceb1fdcf011ee6e064e59
This commit is contained in:
Marek Nečada 2017-06-27 00:22:18 +03:00
parent 3ab9221519
commit 3eaa1e49fa
2 changed files with 80 additions and 0 deletions

80
qpms/lattices2d.py Normal file
View File

@ -0,0 +1,80 @@
import numpy as np
from enum import Enum
class LatticeType(Enum):
"""
All the five Bravais lattices in 2D
"""
OBLIQUE=1
RECTANGULAR=2
SQUARE=4
RHOMBIC=5
EQUILATERAL_TRIANGULAR=3
RIGHT_ISOSCELES=SQUARE
PARALLELOGRAMMIC=OBLIQUE
CENTERED_RHOMBIC=RECTANGULAR
RIGHT_TRIANGULAR=RECTANGULAR
CENTERED_RECTANGULAR=RHOMBIC
ISOSCELE_TRIANGULAR=RHOMBIC
RIGHT_ISOSCELE_TRIANGULAR=SQUARE
HEXAGONAL=EQUILATERAL_TRIANGULAR
def reduceBasisSingle(b1, b2):
"""
Lagrange-Gauss reduction of a 2D basis.
cf. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch17.pdf
TODO doc
inputs and outputs are (2,)-shaped numpy arrays
"""
if b1.shape != (2,) or b2.shape != (2,):
raise ValueError('Shape of b1 and b2 must be (2,)')
B1 = np.sum(b1 * b1, axis=-1, keepdims=True)
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
b2 = b2 - np.rint(mu) * b1
B2 = np.sum(b2 * b2, axis=-1, keepdims=True)
while(np.any(B2 < B1)):
b2t = b1
b1 = b2
b2 = b2t
B1 = B2
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
b2 = b2 - np.rint(mu) * b1
B2 = np.sum(b2*b2, axis=-1, keepdims=True)
return (b1,b2)
def classifyLatticeSingle(b1, b2, tolerance=1e-13):
"""
Given two basis vectors, returns 2D Bravais lattice type.
Tolerance is relative.
TODO doc
"""
b1, b2 = reduceBasisSingle(b1, b2)
b1s = np.sum(b1 ** 2)
b2s = np.sum(b2 ** 2)
b3 = b2 - b1
b3s = np.sum(b3 ** 2)
eps = tolerance * (b2s + b1s)
# avoid obtuse angle between b1 and b2
if b3s - b2s - b1s < eps:
b2 = b2 + b1
b2s = np.sum(b2 ** 2)
b3 = b2 - b1
b3s = np.sum(b3 ** 2)
# This will, however, probably not happen due to the basis reduction
print (sys.stderr, "it happened, obtuse angle!")
if abs(b2s - b1s) < eps: # isoscele
if abs(b3s - b1s) < eps:
return LatticeType.EQUILATERAL_TRIANGULAR
elif abs(b3s - 2 * b1s) < eps:
return LatticeType.SQUARE
else:
return LatticeType.RHOMBIC
elif abs(b3s - b2s - b1s) < eps:
return LatticeType.SQUARE
else:
return LatticeType.OBLIQUE