Add Beyn eigenmode solver

(cherry picked from commit 9ed6ee319a1d0b295ccbd690e7c0c0261111b456 [formerly 896e706a2da075c178b7e736761bdc01e4ea9800])


Former-commit-id: 6de5c14d48258b6105b76eb4fab5b555284caaa4
This commit is contained in:
Kristian Arjas 2019-08-21 11:55:05 +03:00 committed by Marek Nečada
parent cbbdec5963
commit 3fb9f23af5
2 changed files with 526 additions and 0 deletions

431
qpms/libBeyn.c Normal file
View File

@ -0,0 +1,431 @@
/* Copyright (C) 2005-2011 M. T. Homer Reid
*
* This file is part of SCUFF-EM.
*
* SCUFF-EM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* SCUFF-EM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* libBeyn.cc -- implementation of Beyn's method for
* -- nonlinear eigenvalue problems
*
* Homer Reid -- 6/2016
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <complex.h>
//#include <libhrutil.h>
//#include <libhmat.h>
// Maybe GSL works?
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_eigen.h>
#include <libBeyn.h>
//#define II cdouble(0.0,1.0)
// Uniformly random number between -2 and 2
double complex zrandN(){
double a = (rand()*4.0/RAND_MAX) - 2;
double b = (rand()*4.0/RAND_MAX) - 2;
return a + b*I;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
BeynSolver *CreateBeynSolver(int M, int L)
{
BeynSolver *Solver= (BeynSolver *)malloc(sizeof(*Solver));
Solver->M = M;
Solver->L = L;
int MLMax = (M>L) ? M : L;
int MLMin = (M<L) ? M : L;
// storage for eigenvalues and eigenvectors
Solver->Eigenvalues = gsl_vector_complex_calloc(L);
Solver->EVErrors = gsl_vector_complex_calloc(L);
Solver->Residuals = gsl_vector_complex_calloc(L);
Solver->Eigenvectors = gsl_matrix_complex_calloc(M, L);
// storage for singular values, random VHat matrix, etc. used in algorithm
Solver->A0 = gsl_matrix_complex_calloc(M,L);
Solver->A1 = gsl_matrix_complex_calloc(M,L);
Solver->A0Coarse = gsl_matrix_complex_calloc(M,L);
Solver->A1Coarse = gsl_matrix_complex_calloc(M,L);
Solver->MInvVHat = gsl_matrix_complex_calloc(M,L);
Solver->VHat = gsl_matrix_complex_calloc(M,L);
Solver->Sigma = gsl_vector_complex_calloc(MLMin);
ReRandomize(Solver,(unsigned)time(NULL));
// internal workspace: need storage for 2 MxL matrices
// plus 3 LxL matrices
#define MLBUFFERS 2
#define LLBUFFERS 3
size_t ML = MLMax*L, LL = L*L;
size_t WorkspaceSize = (MLBUFFERS*ML + LLBUFFERS*LL)*sizeof(double complex);
Solver->Workspace = (double complex*)malloc( WorkspaceSize );
return Solver;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
void DestroyBeynSolver(BeynSolver *Solver)
{
gsl_vector_complex_free(Solver->Eigenvalues);
gsl_vector_complex_free(Solver->EVErrors);
gsl_matrix_complex_free(Solver->Eigenvectors);
gsl_matrix_complex_free(Solver->A0);
gsl_matrix_complex_free(Solver->A1);
gsl_matrix_complex_free(Solver->A0Coarse);
gsl_matrix_complex_free(Solver->A1Coarse);
gsl_matrix_complex_free(Solver->MInvVHat);
gsl_vector_complex_free(Solver->Sigma);
gsl_matrix_complex_free(Solver->VHat);
free(Solver->Workspace);
free(Solver);
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
void ReRandomize(BeynSolver *Solver, unsigned int RandSeed)
{
if (RandSeed==0)
RandSeed=time(0);
srandom(RandSeed);
gsl_matrix_complex *VHat=Solver->VHat;
for(int nr=0; nr<VHat->size1; nr++)
for(int nc=0; nc<VHat->size2; nc++)
gsl_matrix_set(VHat,nr,nc,zrandN());
}
/***************************************************************/
/* perform linear-algebra manipulations on the A0 and A1 */
/* matrices (obtained via numerical quadrature) to extract */
/* eigenvalues and eigenvectors */
/***************************************************************/
int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
void *Params,
gsl_matrix_complex *A0, gsl_matrix_complex *A1, double complex z0,
gsl_vector_complex *Eigenvalues, gsl_matrix_complex *Eigenvectors)
{
int M = Solver->M;
int L = Solver->L;
gsl_vector_complex *Sigma = Solver->Sigma;
int Verbose = 0;//CheckEnv("SCUFF_BEYN_VERBOSE");
double RankTol=1.0e-4; //CheckEnv("SCUFF_BEYN_RANK_TOL",&RankTol);
double ResTol=0.0; // CheckEnv("SCUFF_BEYN_RES_TOL",&ResTol);
// A0 -> V0Full * Sigma * W0TFull'
printf(" Beyn: computing SVD...\n");
gsl_matrix_complex* V0Full = gsl_matrix_complex_calloc(M,L);
gsl_matrix_memcpy(V0Full,A0);
gsl_matrix_complex* W0TFull = gsl_matrix_complex_calloc(L,L);
//A0->SVD(Sigma, &V0Full, &W0TFull);
gsl_vector_complex *work = gsl_vector_complex_alloc(M);
gsl_linalg_SV_decomp(V0Full, W0TFull, Sigma, work);
// compute effective rank K (number of eigenvalue candidates)
int K=0;
for(int k=0; k<Sigma->size; k++)
{ if (Verbose) printf("Beyn: SV(%i)=%e",k,gsl_vector_get(Sigma, k));
if (gsl_vector_get(Sigma, k) > RankTol )
K++;
}
printf(" Beyn: %i/%i relevant singular values\n",K,L);
if (K==0)
{ printf("no singular values found in Beyn eigensolver\n");
return 0;
}
// set V0, W0T = matrices of first K right, left singular vectors
gsl_matrix_complex *V0 = gsl_matrix_complex_alloc(M,K);
gsl_matrix_complex *W0T= gsl_matrix_complex_alloc(K,L);
gsl_vector_complex *TempM = gsl_vector_complex_calloc(M);
gsl_vector_complex *TempL = gsl_vector_complex_calloc(L);
for(int k=0; k<K; k++){
// It should be rows and cols like this, right..?
gsl_matrix_get_row(TempM, V0Full,k);
gsl_matrix_set_row(V0, k, TempM);
gsl_matrix_get_col(TempL,W0TFull,k);
gsl_matrix_set_col(W0T,k, TempL);
}
gsl_matrix_free(V0Full);
gsl_matrix_free(W0TFull);
gsl_vector_free(work);
gsl_vector_free(TempM);
gsl_vector_free(TempL);
// B <- V0' * A1 * W0 * Sigma^-1
gsl_matrix_complex *TM2 = gsl_matrix_complex_calloc(K,L);
gsl_matrix_complex *B = gsl_matrix_complex_calloc(K,K);
printf(" Multiplying V0*A1->TM...\n");
//V0.Multiply(A1, &TM2, "--transA C"); // TM2 <- V0' * A1
gsl_complex one = gsl_complex_rect(1,0);
gsl_complex zero = gsl_complex_rect(0,0);
gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, one,
V0, A1, zero, TM2);
printf(" Multiplying TM*W0T->B...\n");
//TM2.Multiply(&W0T, &B, "--transB C"); // B <- TM2 * W0
gsl_blas_zgemm(CblasNoTrans, CblasTrans, one,
TM2, W0T, zero, B);
gsl_matrix_free(W0T);
gsl_matrix_free(TM2);
printf(" Scaling B <- B*Sigma^{-1}\n");
gsl_vector_complex *tmp = gsl_vector_complex_calloc(K);
for(int i = 0; i < K; i++){
gsl_matrix_get_col(tmp, B, i);
gsl_vector_scale(tmp, 1.0/gsl_vector_get(Sigma,i));
gsl_matrix_set_col(B,i,tmp);
}
gsl_vector_complex_free(tmp);
//for(int m=0; m<K; m++) // B <- B * Sigma^{-1}
// for(int n=0; n<K; n++)
// B.ScaleEntry(m,n,1.0/Sigma->GetEntry(n));
// B -> S*Lambda*S'
printf(" Eigensolving (%i,%i)\n",K,K);
gsl_vector_complex *Lambda = gsl_vector_complex_calloc(K); // Eigenvalues
gsl_matrix_complex *S = gsl_matrix_complex_calloc(K,K); // Eigenvectors
gsl_matrix_complex *Eye = gsl_matrix_complex_alloc(K,K);
gsl_vector_complex *alph = gsl_vector_complex_calloc(K);
gsl_vector_complex *beta = gsl_vector_complex_calloc(K);
gsl_matrix_set_identity(Eye);
gsl_eigen_genv_workspace * W = gsl_eigen_genv_alloc(K);
gsl_eigen_genv(B, Eye, alph, beta, S,W);
gsl_eigen_genv_free(W);
gsl_complex tmpa;
gsl_complex tmpb;
for(int i = 0; i < K; i++){
tmpb = gsl_vector_complex_get(beta,i);
tmpa = gsl_vector_complex_get(alph,i);
if(gsl_complex_abs(tmpb)){
gsl_vector_complex_set(Lambda, i, gsl_complex_div(tmpa,tmpb));
printf("Eigenvalue %e + %e i found\n",GSL_REAL(gsl_complex_div(tmpa,tmpb)), GSL_IMAG(gsl_complex_div(tmpa,tmpb)));
} else{
printf("Beta %d is zero \n",i);
}
if(!gsl_complex_abs(tmpa)){
printf("Alpha %d is zero \n",i);
}
}
gsl_vector_complex_free(alph);
gsl_vector_complex_free(beta);
gsl_matrix_free(Eye);
//B.NSEig(&Lambda, &S);
// V0S <- V0*S
printf("Multiplying V0*S...\n");
gsl_vector_complex *V = gsl_vector_complex_alloc(K);
gsl_vector_complex *s = gsl_vector_complex_alloc(K);
printf("Evaluating retained values \n");
int KRetained=0;
gsl_vector_complex * om = gsl_vector_alloc(1);
for(int k=0; k<K; k++)
{
if(gsl_complex_abs(gsl_vector_complex_get(Lambda,k))){
gsl_complex tmp_c = gsl_vector_complex_get(Lambda, k);
double complex z = z0 + GSL_REAL(tmp_c) + GSL_IMAG(tmp_c)*I;
//gsl_matrix_get_col(V, V0S, k);
gsl_matrix_get_col(s, S, k);
gsl_blas_zgemv(CblasNoTrans, one, V0, s, zero, V);
double Residual=0.0;
if (ResTol>0.0)
{ /*gsl_matrix_complex Vk(M,1,V);
gsl_matrix_complex MVk(M,1,MLBuffers[0]);
UserFunc(z, Params, &Vk, &MVk);
Residual=VecNorm(MVk.ZM, M);
*/
gsl_vector_complex_set(om,1,tmp_c);
Residual = min_sing(om,Params);
if (1) printf("Beyn: Residual(%i)=%e\n",k,Residual);
}
if (ResTol>0.0 && Residual>ResTol) continue;
//Eigenvalues->SetEntry(KRetained, z);
gsl_vector_complex_set(Eigenvalues, KRetained, tmp_c);
gsl_matrix_complex_set_col(Eigenvectors, KRetained, V);
/*if (Eigenvectors)
{
//Eigenvectors->SetEntries(":", KRetained, V);
//Solver->Residuals->SetEntry(KRetained,Residual);
}
*/
KRetained++;
}
}
printf("%d eigenvalues found \n",KRetained);
gsl_matrix_free(S);
gsl_matrix_free(V0);
gsl_vector_free(Lambda);
gsl_vector_complex_free(om);
return KRetained;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
int BeynSolve(BeynSolver *Solver,
BeynFunction UserFunc, void *Params,
double complex z0, double Rx, double Ry, int N)
{
/***************************************************************/
/* force N to be even so we can simultaneously evaluate */
/* the integral with N/2 quadrature points */
/***************************************************************/
if ( (N%2)==1 ) N++;
/*if (Rx==Ry)
printf("Applying Beyn method with z0=%s,R=%e,N=%i...\n",z2s(z0),Rx,N);
else
printf("Applying Beyn method with z0=%s,Rx=%e,Ry=%e,N=%i...\n",z2s(z0),Rx,Ry,N);
*/
int M = Solver->M;
int L = Solver->L;
gsl_matrix_complex *A0 = Solver->A0;
gsl_matrix_complex *A1 = Solver->A1;
gsl_matrix_complex *A0Coarse = Solver->A0Coarse;
gsl_matrix_complex *A1Coarse = Solver->A1Coarse;
gsl_matrix_complex *MInvVHat = Solver->MInvVHat;
gsl_matrix_complex *VHat = Solver->VHat;
/***************************************************************/
/* evaluate contour integrals by numerical quadrature to get */
/* A0 and A1 matrices */
/***************************************************************/
gsl_matrix_set_zero(A0);
gsl_matrix_set_zero(A1);
gsl_matrix_set_zero(A0Coarse);
gsl_matrix_set_zero(A1Coarse);
double DeltaTheta = 2.0*M_PI / ((double)N);
printf(" Evaluating contour integral (%i points)...\n",N);
for(int n=0; n<N; n++)
{
double Theta = ((double)n)*DeltaTheta;
double CT = cos(Theta), ST=sin(Theta);
gsl_complex z1 = gsl_complex_rect(Rx*CT, Ry*ST);
gsl_complex dz = gsl_complex_rect(Ry*CT/((double)N),(Rx*ST/((double)N)));
double complex zz = Rx*CT + Ry*ST*I;
//MInvVHat->Copy(VHat);
gsl_matrix_memcpy(MInvVHat, VHat);
// Tän pitäis kutsua eval_WT
// Output ilmeisesti tallentuun neljänteen parametriin
UserFunc(z0+zz, Params, VHat, MInvVHat);
gsl_matrix_complex_scale(MInvVHat, dz);
gsl_matrix_complex_add(A0, MInvVHat);
if((n%2)==0) {
gsl_matrix_complex_add(A0Coarse, MInvVHat);
gsl_matrix_complex_add(A0Coarse, MInvVHat);
}
gsl_matrix_complex_scale(MInvVHat, z1);
gsl_matrix_complex_add(A1, MInvVHat);
if((n%2)==0) {
gsl_matrix_complex_add(A1Coarse, MInvVHat);
gsl_matrix_complex_add(A1Coarse, MInvVHat);
}
}
gsl_vector_complex *Eigenvalues = Solver->Eigenvalues;
gsl_vector_complex *EVErrors = Solver->EVErrors;
gsl_matrix_complex *Eigenvectors = Solver->Eigenvectors;
int K = ProcessAMatrices(Solver, UserFunc, Params, A0, A1, z0, Eigenvalues, Eigenvectors);
//int KCoarse = ProcessAMatrices(Solver, UserFunc, Params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors);
// Log("{K,KCoarse}={%i,%i}",K,KCoarse);
/*
for(int k=0; k<EVErrors->N && k<Eigenvalues->N; k++)
{ EVErrors->ZV[k] -= Eigenvalues->ZV[k];
EVErrors->ZV[k] = cdouble( fabs(real(EVErrors->ZV[k])),
fabs(imag(EVErrors->ZV[k]))
);
}
*/
return 0;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
/*
int BeynSolve(BeynSolver *Solver,
BeynFunction UserFunction, void *Params,
cdouble z0, double R, int N)
{ return BeynSolve(Solver, UserFunction, Params, z0, R, R, N); }
*/

95
qpms/libBeyn.h Normal file
View File

@ -0,0 +1,95 @@
/* Copyright (C) 2005-2011 M. T. Homer Reid
*
* This file is part of SCUFF-EM.
*
* SCUFF-EM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* SCUFF-EM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* libBeyn.h -- header file for libBeyn, a simple implementation of
* -- Beyn's algorithm for nonlinear eigenproblems
* --
* -- This is packaged together with SCUFF-EM, but
* -- it is really a standalone independent entity
* -- for general-purpose use in solving nonlinear
* -- eigenproblems.
*/
#ifndef LIBBEYN_H
#define LIBBEYN_H
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <fenv.h>
#include <complex.h>
// Needs to be changed to gsl or something
//#include <libhmat.h>
#include <gsl/gsl_matrix.h>
/***************************************************************/
/* prototype for user-supplied function passed to BeynMethod. */
/* The user's function should replace VHat with */
/* Inverse[ M(z) ] * VHat. */
/***************************************************************/
typedef void (*BeynFunction)(double complex z, void *Params, gsl_matrix_complex *VHat, gsl_matrix_complex *MVHat);
/***************************************************************/
/***************************************************************/
/***************************************************************/
typedef struct BeynSolver
{
int M; // dimension of matrices
int L; // number of columns of VHat matrix
gsl_vector_complex *Eigenvalues, *EVErrors, *Residuals;
gsl_matrix_complex *Eigenvectors;
gsl_matrix_complex *A0, *A1, *A0Coarse, *A1Coarse, *MInvVHat;
gsl_matrix_complex *VHat;
gsl_vector_complex *Sigma;
double complex *Workspace;
} BeynSolver;
// constructor, destructor
BeynSolver *CreateBeynSolver(int M, int L);
void DestroyBeynSolver(BeynSolver *Solver);
// reset the random matrix VHat used in the Beyn algorithm
//
void ReRandomize(BeynSolver *Solver, unsigned int RandSeed);
// for both of the following routines,
// the return value is the number of eigenvalues found,
// and the eigenvalues and eigenvectors are stored in the
// Lambda and Eigenvectors fields of the BeynSolver structure
// Beyn method for circular contour of radius R,
// centered at z0, using N quadrature points
//int BeynSolve(BeynSolver *Solver,
// BeynFunction UserFunction, void *Params,
// double complex z0, double R, int N);
// Beyn method for elliptical contour of horizontal, vertical
// radii Rx, Ry, centered at z0, using N quadrature points
int BeynSolve(BeynSolver *Solver,
BeynFunction UserFunction, void *Params,
double complex z0, double Rx, double Ry, int N);
#endif