Fix M = WT -> M = TW + some forgotten changes.
Former-commit-id: 4166fb78baf097b52a559ece093454450ed19fbd
This commit is contained in:
parent
44b8146fe2
commit
3fe357fb8a
|
@ -285,7 +285,7 @@ status open
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffincp}[1]{a_{#1}^{\mathrm{inc.}}}
|
||||
\newcommand{\rcoeffincp}[1]{\tilde{a}_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -295,7 +295,7 @@ status open
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffinc}{a^{\mathrm{inc.}}}
|
||||
\newcommand{\rcoeffinc}{\tilde{a}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
|
@ -95,6 +95,13 @@
|
|||
|
||||
\begin_layout Section
|
||||
Applications
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Applications"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\lyxformat 584
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
|
@ -95,6 +95,13 @@
|
|||
|
||||
\begin_layout Section
|
||||
Infinite periodic systems
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Infinite"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlv}{\vect a}
|
||||
\end_inset
|
||||
|
@ -325,7 +332,7 @@ As in the case of a finite system, eq.
|
|||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
|
||||
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=T\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -348,7 +355,7 @@ noprefix "false"
|
|||
the external driving) set to zero,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
|
||||
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -369,7 +376,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
exist if the matrix on the left-hand side
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
|
||||
\end_inset
|
||||
|
||||
is singular – this condition gives the
|
||||
|
@ -710,13 +717,22 @@ where changed the sign of
|
|||
.
|
||||
Fourier transform of product is convolution of Fourier transforms, so (using
|
||||
formula
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Dirac comb uaFt"
|
||||
|
||||
\end_inset
|
||||
|
||||
for the Fourier transform of Dirac comb)
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
(REF?) for the Fourier transform of Dirac comb)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
|
||||
|
|
|
@ -1061,7 +1061,7 @@ Periodic systems
|
|||
\begin_layout Standard
|
||||
For periodic systems, we can in similar manner also block-diagonalise the
|
||||
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
|
||||
\end_inset
|
||||
|
||||
from the left hand side of eqs.
|
||||
|
|
Loading…
Reference in New Issue