From 40809ce90a2b0bb266e8ced9056659d30d4bd2bd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Wed, 3 May 2017 02:22:14 +0300 Subject: [PATCH] The array version of the AB coeff calculation still has bugs. rewriting to C Former-commit-id: c6582a03a8b73b46156416eb0faa3f866e2638ce --- qpms/qpms_c.pyx | 107 ++++++++++++++++++++++++------------------------ 1 file changed, 53 insertions(+), 54 deletions(-) diff --git a/qpms/qpms_c.pyx b/qpms/qpms_c.pyx index f88da5b..5fa0c4d 100644 --- a/qpms/qpms_c.pyx +++ b/qpms/qpms_c.pyx @@ -554,7 +554,7 @@ cdef class trans_calculator: # TODO CHECK (and try to cast) INPUT ARRAY TYPES (now is done) # BIG FIXME: make skalars valid arguments, now r, theta, phi, r_ge_d have to be ndarrays cdef: - int daxis, saxis, smallaxis, bigaxis, reslen, longest_axis, i, j, d, ax, errval + int daxis, saxis, smallaxis, bigaxis, resnd, longest_axis, i, j, d, ax, errval np.npy_intp sstride, dstride, longi, longstride int *local_indices int *innerloop_shape @@ -565,36 +565,54 @@ cdef class trans_calculator: char *a_p char *b_p # Process the array shapes - baseshape = np.broadcast.shape(r,theta,phi,r_ge_d) + baseshape = np.broadcast(r,theta,phi,r_ge_d).shape # nope, does not work as needed + ''' + cdef int r_orignd = r.ndim if hasattr(r, "ndim") else 0 + cdef int theta_orignd = theta.ndim if hasattr(theta, "ndim") else 0 + cdef int phi_orignd = phi.ndim if hasattr(phi, "ndim") else 0 + cdef int r_ge_d_orignd = r_ge_d.ndim if hasattr(r_ge_d, "__len__") else 0 + cdef int basend = max(r_orignd, theta_orignd, phi_orignd, r_ge_d_orignd) + baseshape = list() + for d in range(basend): + baseshape.append(max( + r.shape[d+r_orignd-basend] if d+r_orignd-basend >= 0 else 1, + theta.shape[d+theta_orignd-basend] if d+theta_orignd-basend >= 0 else 1, + phi.shape[d+phi_orignd-basend] if d+phi_orignd-basend >= 0 else 1, + r_ge_d.shape[d+r_ge_d_orignd-basend] if d+r_ge_d_orignd-basend >= 0 else 1, + )) + baseshape = tuple(baseshape) + ''' if not expand: - reslen = len(baseshape) - if reslen < 2: + resnd = len(baseshape) + if resnd < 2: raise ValueError('Translation matrix arrays must have at least 2 dimensions!') - daxis = (reslen-2) if destaxis is None else destaxis - saxis = (reslen-1) if srcaxis is None else srcaxis + daxis = (resnd-2) if destaxis is None else destaxis + saxis = (resnd-1) if srcaxis is None else srcaxis if daxis < 0: - daxis = reslen + daxis + daxis = resnd + daxis if saxis < 0: - saxis = reslen + saxis - if daxis < 0 or saxis < 0 or daxis >= reslen or saxis >= reslen or daxis == saxis: + saxis = resnd + saxis + if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis: raise ValueError('invalid axes provided (destaxis = %d, srcaxis = %d, # of axes: %d' - % (daxis, saxis, reslen)) + % (daxis, saxis, resnd)) if baseshape[daxis] != 1 or baseshape[saxis] != 1: raise ValueError('dimension mismatch (input argument dimensions have to be 1 both at' 'destaxis (==%d) and srcaxis (==%d) but are %d and %d' % (daxis, saxis, baseshape[daxis], baseshape[saxis])) resultshape = list(baseshape) else: - reslen = len(baseshape)+2 - if destaxis is None: - daxis = -2 - if srcaxis is None: - saxis = -1 + resnd = len(baseshape)+2 + daxis = (resnd-2) if destaxis is None else destaxis + saxis = (resnd-1) if srcaxis is None else srcaxis + print(daxis) + print(saxis) if daxis < 0: - daxis = reslen + daxis + daxis = resnd + daxis + print(daxis) if saxis < 0: - saxis = reslen + saxis - if daxis < 0 or saxis < 0 or daxis >= reslen or saxis >= reslen or daxis == saxis: + saxis = resnd + saxis + print(saxis) + if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis: raise ValueError('invalid axes provided') # TODO better error formulation resultshape = list(baseshape) if daxis > saxis: @@ -602,23 +620,26 @@ cdef class trans_calculator: bigaxis = daxis else: smallaxis = daxis - bixagis = saxis + bigaxis = saxis resultshape.insert(smallaxis,1) resultshape.insert(bigaxis,1) r = np.expand_dims(np.expand_dims(r.astype(np.float_, copy=False), smallaxis), bigaxis) theta = np.expand_dims(np.expand_dims(theta.astype(np.float_, copy=False), smallaxis), bigaxis) phi = np.expand_dims(np.expand_dims(phi.astype(np.float_, copy=False), smallaxis), bigaxis) - r_ge_d = np.expand_dims(np.expand_dims(r_ge_d(np.bool_, copy=False), smallaxis), bigaxis) + r_ge_d = np.expand_dims(np.expand_dims(r_ge_d.astype(np.bool_, copy=False), smallaxis), bigaxis) + print(baseshape) + print(len(baseshape), resnd,smallaxis, bigaxis) + print(r.shape, theta.shape,phi.shape,r_ge_d.shape) - longestaxis = 0 + longest_axis = 0 # FIxME: the whole thing with longest_axis will fail if none is longer than 1 - for i in range(reslen): + for i in range(resnd): if resultshape[i] > resultshape[longest_axis]: - longestaxis = i - innerloop_shape = malloc(reslen * sizeof(int)) + longest_axis = i + innerloop_shape = malloc(resnd * sizeof(int)) if innerloop_shape == NULL: abort() - for i in range(reslen): + for i in range(resnd): innerloop_shape[i] = resultshape[i] innerloop_shape[longest_axis] = 1 # longest axis will be iterated in the outer (parallelized) loop. Therefore, longest axis, together with saxis and daxis, will not be iterated in the inner loop resultshape[daxis] = self.c[0].nelem @@ -634,20 +655,20 @@ cdef class trans_calculator: longstride = a.strides[longest_axis] # TODO write this in C (as a function) and parallelize there with nogil: #, parallel(): # FIXME rewrite this part in C - local_indices = calloc(reslen, sizeof(int)) + local_indices = calloc(resnd, sizeof(int)) if local_indices == NULL: abort() for longi in range(a.shape[longest_axis]): # outer loop (to be parallelized) # this might be done also in the inverse order, but this is more 'c-contiguous' way of incrementing the indices - ax = reslen - 1 + ax = resnd - 1 while ax >= 0: - # calculate the correct index/pointer for each array used. This can be further optimized from O(reslen * total size of the result array) to O(total size of the result array), but fick that now + # calculate the correct index/pointer for each array used. This can be further optimized from O(resnd * total size of the result array) to O(total size of the result array), but fick that now r_p = r_c.data + r_c.strides[longest_axis] * longi theta_p = theta_c.data + theta_c.strides[longest_axis] * longi phi_p = phi_c.data + phi_c.strides[longest_axis] * longi r_ge_d_p = r_ge_d_c.data + r_ge_d_c.strides[longest_axis] * longi a_p = a.data + a.strides[longest_axis] * longi b_p = b.data + b.strides[longest_axis] * longi - for i in range(reslen): + for i in range(resnd): if i == longest_axis: continue r_p += r_c.strides[i] * local_indices[i] theta_p += theta_c.strides[i] * local_indices[i] @@ -664,14 +685,14 @@ cdef class trans_calculator: (r_p)[0], (theta_p)[0], (phi_p)[0], ((r_ge_d_p)[0]), J) if errval: abort() - # increment the last index 'digit' (ax is now reslen-1; we don't have do-while loop in python) + # increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python) local_indices[ax] += 1 while (local_indices[ax] == innerloop_shape[ax] and ax >= 0): # overflow to the next digit but stop when we reach below the last one local_indices[ax] = 0 ax -= 1 local_indices[ax] += 1 if ax >= 0: # did not overflow, get back to the lowest index - ax = reslen - 1 + ax = resnd - 1 @@ -684,27 +705,5 @@ cdef class trans_calculator: continue free(local_indices) free(innerloop_shape) - - - - - - - - - - - - - - - - - - - - + return a, b # TODO make possible to access the attributes (to show normalization etc) - - -