Rovinná vlna pokažená (spletl jsem si vzorečky Taylora a xu)
Former-commit-id: e01040c99983fcc79f5b1123b517125fbeacb72b
This commit is contained in:
parent
704a065ca1
commit
4127822b15
|
@ -280,6 +280,105 @@ The expressions for
|
|||
are dimensionless.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\emph on
|
||||
Note about the case
|
||||
\begin_inset Formula $\theta\to0,\pi$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\emph default
|
||||
There is a divergent
|
||||
\begin_inset Formula $1/\sin\theta$
|
||||
\end_inset
|
||||
|
||||
factor in the
|
||||
\begin_inset Formula $\pi_{mn}(\cos\theta)$
|
||||
\end_inset
|
||||
|
||||
function.
|
||||
For
|
||||
\begin_inset Formula $m=0$
|
||||
\end_inset
|
||||
|
||||
, it is irrelevant because of the
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
factor (it would be bad otherwise, because
|
||||
\begin_inset Formula $P_{n}^{0}(\cos\theta)$
|
||||
\end_inset
|
||||
|
||||
does not go to zero at
|
||||
\begin_inset Formula $\theta\to0,\pi$
|
||||
\end_inset
|
||||
|
||||
).
|
||||
For
|
||||
\begin_inset Formula $\left|m\right|\ge2$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $P_{n}^{m}(x)$
|
||||
\end_inset
|
||||
|
||||
behaves as
|
||||
\begin_inset Formula $o(x+1),o(x-1)$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $-1,1$
|
||||
\end_inset
|
||||
|
||||
, so
|
||||
\begin_inset Formula $P_{n}^{m}(\cos\theta)$
|
||||
\end_inset
|
||||
|
||||
goes like
|
||||
\begin_inset Formula $o(\theta^{2}),o\left((\theta-\pi)^{2}\right)$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $0,\pi$
|
||||
\end_inset
|
||||
|
||||
, which safely eliminates the divergent factor.
|
||||
However, for
|
||||
\begin_inset Formula $\left|m\right|=1$
|
||||
\end_inset
|
||||
|
||||
, the whole expression
|
||||
\begin_inset Formula $P_{n}^{m}(\cos\theta)/\sin\theta$
|
||||
\end_inset
|
||||
|
||||
has a finite nonzero limit for
|
||||
\begin_inset Formula $\theta\to0,\pi$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
According to Mathematica (for
|
||||
\begin_inset Formula $\theta\to\pi,$
|
||||
\end_inset
|
||||
|
||||
Mathematica does not work well, but it can be derived from the
|
||||
\begin_inset Formula $\theta\to0$
|
||||
\end_inset
|
||||
|
||||
case and oddness/evenness).
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\lim_{\theta\to0}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & -\frac{1}{2}n(1+n),\qquad\lim_{\theta\to0}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{1}{2},\\
|
||||
\lim_{\theta\to\pi}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & \frac{\left(-1\right)^{n}}{2}n(1+n),\qquad\lim_{\theta\to\pi}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{\left(-1\right)^{n+1}}{2}.
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
NOT COMPLETELY SURE ABOUT THE SIGN/NORMALIZATION CONVENTION HERE.
|
||||
IT HAS TO BE CHECKED.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Expansions for the scattered fields are
|
||||
\begin_inset CommandInset citation
|
||||
|
|
Loading…
Reference in New Issue