Rovinná vlna pokažená (spletl jsem si vzorečky Taylora a xu)

Former-commit-id: e01040c99983fcc79f5b1123b517125fbeacb72b
This commit is contained in:
Marek Nečada 2016-01-06 01:32:10 +02:00
parent 704a065ca1
commit 4127822b15
1 changed files with 99 additions and 0 deletions

View File

@ -280,6 +280,105 @@ The expressions for
are dimensionless. are dimensionless.
\end_layout \end_layout
\begin_layout Standard
\emph on
Note about the case
\begin_inset Formula $\theta\to0,\pi$
\end_inset
:
\emph default
There is a divergent
\begin_inset Formula $1/\sin\theta$
\end_inset
factor in the
\begin_inset Formula $\pi_{mn}(\cos\theta)$
\end_inset
function.
For
\begin_inset Formula $m=0$
\end_inset
, it is irrelevant because of the
\begin_inset Formula $m$
\end_inset
factor (it would be bad otherwise, because
\begin_inset Formula $P_{n}^{0}(\cos\theta)$
\end_inset
does not go to zero at
\begin_inset Formula $\theta\to0,\pi$
\end_inset
).
For
\begin_inset Formula $\left|m\right|\ge2$
\end_inset
,
\begin_inset Formula $P_{n}^{m}(x)$
\end_inset
behaves as
\begin_inset Formula $o(x+1),o(x-1)$
\end_inset
at
\begin_inset Formula $-1,1$
\end_inset
, so
\begin_inset Formula $P_{n}^{m}(\cos\theta)$
\end_inset
goes like
\begin_inset Formula $o(\theta^{2}),o\left((\theta-\pi)^{2}\right)$
\end_inset
at
\begin_inset Formula $0,\pi$
\end_inset
, which safely eliminates the divergent factor.
However, for
\begin_inset Formula $\left|m\right|=1$
\end_inset
, the whole expression
\begin_inset Formula $P_{n}^{m}(\cos\theta)/\sin\theta$
\end_inset
has a finite nonzero limit for
\begin_inset Formula $\theta\to0,\pi$
\end_inset
.
According to Mathematica (for
\begin_inset Formula $\theta\to\pi,$
\end_inset
Mathematica does not work well, but it can be derived from the
\begin_inset Formula $\theta\to0$
\end_inset
case and oddness/evenness).
\begin_inset Formula
\begin{eqnarray*}
\lim_{\theta\to0}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & -\frac{1}{2}n(1+n),\qquad\lim_{\theta\to0}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{1}{2},\\
\lim_{\theta\to\pi}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & \frac{\left(-1\right)^{n}}{2}n(1+n),\qquad\lim_{\theta\to\pi}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{\left(-1\right)^{n+1}}{2}.
\end{eqnarray*}
\end_inset
NOT COMPLETELY SURE ABOUT THE SIGN/NORMALIZATION CONVENTION HERE.
IT HAS TO BE CHECKED.
\end_layout
\begin_layout Standard \begin_layout Standard
Expansions for the scattered fields are Expansions for the scattered fields are
\begin_inset CommandInset citation \begin_inset CommandInset citation