Rovinná vlna pokažená (spletl jsem si vzorečky Taylora a xu)
Former-commit-id: e01040c99983fcc79f5b1123b517125fbeacb72b
This commit is contained in:
parent
704a065ca1
commit
4127822b15
|
@ -280,6 +280,105 @@ The expressions for
|
||||||
are dimensionless.
|
are dimensionless.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
|
||||||
|
\emph on
|
||||||
|
Note about the case
|
||||||
|
\begin_inset Formula $\theta\to0,\pi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\emph default
|
||||||
|
There is a divergent
|
||||||
|
\begin_inset Formula $1/\sin\theta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
factor in the
|
||||||
|
\begin_inset Formula $\pi_{mn}(\cos\theta)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
function.
|
||||||
|
For
|
||||||
|
\begin_inset Formula $m=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, it is irrelevant because of the
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
factor (it would be bad otherwise, because
|
||||||
|
\begin_inset Formula $P_{n}^{0}(\cos\theta)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
does not go to zero at
|
||||||
|
\begin_inset Formula $\theta\to0,\pi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
).
|
||||||
|
For
|
||||||
|
\begin_inset Formula $\left|m\right|\ge2$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $P_{n}^{m}(x)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
behaves as
|
||||||
|
\begin_inset Formula $o(x+1),o(x-1)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
at
|
||||||
|
\begin_inset Formula $-1,1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, so
|
||||||
|
\begin_inset Formula $P_{n}^{m}(\cos\theta)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
goes like
|
||||||
|
\begin_inset Formula $o(\theta^{2}),o\left((\theta-\pi)^{2}\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
at
|
||||||
|
\begin_inset Formula $0,\pi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which safely eliminates the divergent factor.
|
||||||
|
However, for
|
||||||
|
\begin_inset Formula $\left|m\right|=1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, the whole expression
|
||||||
|
\begin_inset Formula $P_{n}^{m}(\cos\theta)/\sin\theta$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
has a finite nonzero limit for
|
||||||
|
\begin_inset Formula $\theta\to0,\pi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
According to Mathematica (for
|
||||||
|
\begin_inset Formula $\theta\to\pi,$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Mathematica does not work well, but it can be derived from the
|
||||||
|
\begin_inset Formula $\theta\to0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
case and oddness/evenness).
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\lim_{\theta\to0}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & -\frac{1}{2}n(1+n),\qquad\lim_{\theta\to0}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{1}{2},\\
|
||||||
|
\lim_{\theta\to\pi}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & \frac{\left(-1\right)^{n}}{2}n(1+n),\qquad\lim_{\theta\to\pi}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{\left(-1\right)^{n+1}}{2}.
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
NOT COMPLETELY SURE ABOUT THE SIGN/NORMALIZATION CONVENTION HERE.
|
||||||
|
IT HAS TO BE CHECKED.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
Expansions for the scattered fields are
|
Expansions for the scattered fields are
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
|
|
Loading…
Reference in New Issue