Translation operators long range part fourier transform
Former-commit-id: 7c5e6f557f3334f42e0b3bd955aafdefa775e863
This commit is contained in:
parent
b6e1663619
commit
41366c175d
|
@ -502,6 +502,7 @@ void qpms_trans_calculator_free(qpms_trans_calculator *c) {
|
|||
free(c->B_multipliers);
|
||||
#ifdef LATTICESUMS
|
||||
free(c->hct);
|
||||
free(c->legendre0);
|
||||
#endif
|
||||
free(c);
|
||||
}
|
||||
|
@ -913,6 +914,9 @@ qpms_trans_calculator
|
|||
free(qmaxes);
|
||||
#ifdef LATTICESUMS
|
||||
c->hct = hankelcoefftable_init(2*lMax+1);
|
||||
c->legendre0 = malloc(gsl_sf_legendre_array_n(2*lMax+1) * sizeof(double));
|
||||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*lMax+1,
|
||||
0,-1,c->legendre0)) abort(); // TODO maybe use some "precise" analytical formula instead?
|
||||
#endif
|
||||
return c;
|
||||
}
|
||||
|
@ -1151,12 +1155,13 @@ int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
|
|||
|
||||
|
||||
#ifdef LATTICESUMS
|
||||
|
||||
int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t kdlj, qpms_bessel_t J,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double c, // regularisation params
|
||||
complex double *bessel_buf, double *legendre_buf,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
|
||||
complex double *bessel_buf, double *legendre_buf
|
||||
) {
|
||||
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
|
||||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||||
|
@ -1171,13 +1176,13 @@ int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculat
|
|||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
case QPMS_NORMALISATION_POWER:
|
||||
//case QPMS_NORMALISATION_NONE: // I am not sure the Hankel transform work the same way for unnormalised waves, so disallow for now
|
||||
case QPMS_NORMALISATION_NONE:
|
||||
{
|
||||
double costheta = cos(kdlj.theta);
|
||||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
|
||||
costheta,-1,legendre_buf)) abort();
|
||||
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort(); // original
|
||||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, c, kdlj.r);
|
||||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
|
||||
size_t desti = 0, srci = 0;
|
||||
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
|
||||
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
|
||||
|
@ -1207,7 +1212,7 @@ int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c
|
|||
complex double *Adest, complex double *Bdest,
|
||||
int m, int n, int mu, int nu, sph_t kdlj,
|
||||
qpms_bessel_t J,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double c, // regularisation params
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
|
||||
complex double *bessel_buf, double *legendre_buf) {
|
||||
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
|
||||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||||
|
@ -1219,18 +1224,18 @@ int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c
|
|||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
case QPMS_NORMALISATION_KRISTENSSON:
|
||||
// case QPMS_NORMALISATION_NONE: // Not sure if it would work, so disable for now
|
||||
case QPMS_NORMALISATION_NONE:
|
||||
{
|
||||
double costheta = cos(kdlj.theta);
|
||||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||||
costheta,-1,legendre_buf)) abort();
|
||||
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort(); // original
|
||||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, c, kdlj.r);
|
||||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
|
||||
|
||||
*Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||||
kdlj,false,J,bessel_buf,legendre_buf);
|
||||
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||||
kdlj,false,J,bessel_buf,legendre_buf);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
|
@ -1245,11 +1250,11 @@ int qpms_trans_calculator_get_shortrange_AB_p(const qpms_trans_calculator *c,
|
|||
complex double *Adest, complex double *Bdest,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double c) {
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cc) {
|
||||
double leg[gsl_sf_legendre_array_n(2*c->lMax+1)];
|
||||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||||
return qpms_trans_calculator_get_shortrange_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,J,
|
||||
lrcutoff, kappa, c,
|
||||
lrcutoff, kappa, cc,
|
||||
bes, leg);
|
||||
}
|
||||
|
||||
|
@ -1257,32 +1262,179 @@ int qpms_trans_calculator_get_shortrange_AB_arrays(const qpms_trans_calculator *
|
|||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t kdlj, qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double c) {
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cc) {
|
||||
double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)];
|
||||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||||
return qpms_trans_calculator_get_AB_arrays_buf(c,
|
||||
return qpms_trans_calculator_get_shortrange_AB_arrays_buf(c,
|
||||
Adest, Bdest, deststride, srcstride,
|
||||
kdlj, J,
|
||||
lrcutoff, kappa, c,
|
||||
lrcutoff, kappa, cc,
|
||||
bes, leg);
|
||||
}
|
||||
|
||||
|
||||
// Long-range parts
|
||||
static inline complex double qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
|
||||
qpms_bessel_t J /* must be 3 for now */,
|
||||
const complex double *lrhankel_recparts_buf) {
|
||||
assert(J == QPMS_HANKEL_PLUS);
|
||||
//assert(k_sph.theta == M_PI_2); CHECK IN ADVANCE INSTEAD
|
||||
//assert(k_sph.r > 0);
|
||||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||||
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
|
||||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||||
complex double sum, kahanc;
|
||||
ckahaninit(&sum, &kahanc);
|
||||
for(size_t q = 0; q <= qmax; ++q) {
|
||||
int p = n+nu-2*q;
|
||||
double Pp = c->legendre0[gsl_sf_legendre_array_index(p, abs(mu-m))];
|
||||
complex double zp = trindex_cd(lrhankel_recparts_buf, p)[abs(mu-m)]; // orig: bessel_buf[p];
|
||||
if (mu - m < 0) zp *= min1pow(mu-m); // DLMF 10.4.1
|
||||
complex double multiplier = c->A_multipliers[i][q];
|
||||
ckahanadd(&sum, &kahanc, Pp * zp * multiplier);
|
||||
}
|
||||
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
|
||||
return sum * eimf * ipow(mu-m);
|
||||
}
|
||||
|
||||
static inline complex double qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
|
||||
qpms_bessel_t J /* must be 3 for now */,
|
||||
const complex double *lrhankel_recparts_buf) {
|
||||
assert(J == QPMS_HANKEL_PLUS);
|
||||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||||
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
|
||||
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
|
||||
complex double sum, kahanc;
|
||||
ckahaninit(&sum, &kahanc);
|
||||
for(int q = BQ_OFFSET; q <= qmax; ++q) {
|
||||
int p = n+nu-2*q;
|
||||
double Pp_ = c->legendre0[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
|
||||
complex double zp_ = trindex_cd(lrhankel_recparts_buf, p+1)[abs(mu-m)]; // orig: bessel_buf[p+1];
|
||||
if (mu - m < 0) zp_ *= min1pow(mu-m); // DLMF 10.4.1
|
||||
complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
|
||||
ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier);
|
||||
}
|
||||
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
|
||||
return sum * eimf * ipow(mu-m);
|
||||
}
|
||||
|
||||
int qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
int m, int n, int mu, int nu, sph_t k_sph,
|
||||
qpms_bessel_t J,
|
||||
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
|
||||
complex double *lrhankel_recparts_buf) {
|
||||
|
||||
assert (J == QPMS_HANKEL_PLUS);
|
||||
assert(k_sph.theta == M_PI_2);
|
||||
|
||||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
case QPMS_NORMALISATION_KRISTENSSON:
|
||||
case QPMS_NORMALISATION_NONE:
|
||||
#ifdef USE_XU_ANTINORMALISATION
|
||||
case QPMS_NORMALISATION_XU:
|
||||
#endif
|
||||
{
|
||||
//double costheta = cos(kdlj.theta);
|
||||
//if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||||
// costheta,-1,legendre_buf)) abort();
|
||||
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
|
||||
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1 /* TODO n+nu+1 might be enough */,
|
||||
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
|
||||
*Adest = qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
|
||||
k_sph,J,lrhankel_recparts_buf);
|
||||
*Bdest = qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
|
||||
k_sph,J,lrhankel_recparts_buf);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Fourier transforms of the long-range parts of the translation coefficients
|
||||
int qpms_trans_calculator_get_Fourier_longrange_AB_p(const qpms_trans_calculator *c,
|
||||
int qpms_trans_calculator_get_2DFT_longrange_AB_p(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t k_sph,
|
||||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
|
||||
TODO;
|
||||
int maxp = 2*c->lMax+1; // TODO this may not be needed here, n+nu+1 could be enough instead
|
||||
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
|
||||
return qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(c, Adest, Bdest,m,n,mu,nu,k_sph,
|
||||
J, lrcutoff, kappa, cv, k0, lrhankel_recpart);
|
||||
}
|
||||
|
||||
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t k_sph, qpms_bessel_t J /* must be 3 for now */,
|
||||
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
|
||||
complex double *lrhankel_recparts_buf) {
|
||||
assert(J == QPMS_HANKEL_PLUS);
|
||||
assert(k_sph.theta == M_PI_2);
|
||||
#if 0
|
||||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||||
for (size_t i = 0; i < c->nelem; ++i)
|
||||
for (size_t j = 0; j < c->nelem; ++j) {
|
||||
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||||
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||||
}
|
||||
// TODO warn? different return value?
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
case QPMS_NORMALISATION_POWER:
|
||||
case QPMS_NORMALISATION_NONE:
|
||||
{
|
||||
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1,
|
||||
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
|
||||
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort();
|
||||
size_t desti = 0, srci = 0;
|
||||
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
|
||||
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
|
||||
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
|
||||
assert(assertindex == desti*c->nelem + srci);
|
||||
*(Adest + deststride * desti + srcstride * srci) =
|
||||
qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
|
||||
k_sph,J,lrhankel_recparts_buf);
|
||||
*(Bdest + deststride * desti + srcstride * srci) =
|
||||
qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
|
||||
k_sph,J,lrhankel_recparts_buf);
|
||||
++srci;
|
||||
}
|
||||
++desti;
|
||||
srci = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
int qpms_trans_calculator_get_Fourier_longrange_AB_arrays(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t k_sph, qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
|
||||
TODO;
|
||||
int maxp = 2*c->lMax+1;
|
||||
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
|
||||
return qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(c,
|
||||
Adest, Bdest, deststride, srcstride, k_sph, J,
|
||||
lrcutoff, kappa, cv, k0,
|
||||
lrhankel_recpart);
|
||||
}
|
||||
|
||||
#endif // LATTICESUMS
|
||||
|
||||
|
||||
|
|
|
@ -47,6 +47,7 @@ typedef struct qpms_trans_calculator {
|
|||
#endif
|
||||
#ifdef LATTICESUMS
|
||||
complex double *hct; // Hankel function coefficient table
|
||||
double *legendre0; // Zero-argument Legendre functions – this might go outside #ifdef in the end...
|
||||
#endif
|
||||
} qpms_trans_calculator;
|
||||
|
||||
|
@ -96,21 +97,21 @@ int qpms_trans_calculator_get_shortrange_AB_p(const qpms_trans_calculator *c,
|
|||
complex double *Adest, complex double *Bdest,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t longrange_order_cutoff, unsigned kappa, double c);
|
||||
qpms_l_t longrange_order_cutoff, unsigned kappa, double cc);
|
||||
int qpms_trans_calculator_get_shortrange_AB_arrays(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t kdlj, qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t longrange_order_cutoff, unsigned kappa, double c);
|
||||
qpms_l_t longrange_order_cutoff, unsigned kappa, double cc);
|
||||
|
||||
// Fourier transforms of the long-range parts of the translation coefficients
|
||||
int qpms_trans_calculator_get_Fourier_longrange_AB_p(const qpms_trans_calculator *c,
|
||||
int qpms_trans_calculator_get_2DFT_longrange_AB_p(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t k_sph,
|
||||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
qpms_l_t longrange_order_cutoff, unsigned kappa, double cv, double k0);
|
||||
|
||||
int qpms_trans_calculator_get_Fourier_longrange_AB_arrays(const qpms_trans_calculator *c,
|
||||
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t k_sph, qpms_bessel_t J /* Only J=3 valid for now */,
|
||||
|
|
Loading…
Reference in New Issue