Meze; duspát
Former-commit-id: 1021ca930f01b4a19a18d1f33add25f55d60adbf
This commit is contained in:
parent
9b3632d5a0
commit
417464122d
|
@ -3199,6 +3199,10 @@ safe radius
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Short-range (real-space) sum
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For the short-range part
|
||||
\begin_inset Formula $\sigma_{n}^{m(2)}$
|
||||
|
@ -3255,7 +3259,87 @@ Apparently, this expression is problematic for
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Hence it might make sense to take a rougher estimate TODO
|
||||
Hence it might make sense to take a rougher estimate using (for
|
||||
\begin_inset Formula $n=1$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right] & = & \int_{R_{\mathrm{s}}}^{\infty}r^{2}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}e^{k^{2}/4\xi^{2}}\xi^{2}\ud\xi\,\ud r\\
|
||||
& \le & e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r,
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
now the integration on the last line is
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
symmetric
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
w.r.t.
|
||||
|
||||
\begin_inset Formula $R_{\mathrm{s}}\leftrightarrow\eta$
|
||||
\end_inset
|
||||
|
||||
, so we can write either TODO; dammit, I should implement the hypergeometric
|
||||
fn instead.
|
||||
\begin_inset Formula
|
||||
\[
|
||||
B_{R_{\mathrm{s}}}\left[f_{\eta}^{\mathrm{L}}\right]\le e^{k^{2}/4\eta^{2}}\int_{R_{\mathrm{s}}}^{\infty}\int_{\eta}^{\infty}e^{-r^{2}\xi^{2}}r^{2}\xi^{2}\ud\xi\,\ud r
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Long-range (
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
-space) sum
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For
|
||||
\begin_inset Formula $\beta_{pq}>k$
|
||||
\end_inset
|
||||
|
||||
, we have
|
||||
\begin_inset Formula $\gamma_{pq}=\frac{\beta_{pq}}{k}\sqrt{1-\left(k/\beta_{pq}\right)^{2}}\le\frac{\beta_{pq}}{k}$
|
||||
\end_inset
|
||||
|
||||
, hence
|
||||
\begin_inset Formula $\Gamma_{j,pq}=\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)$
|
||||
\end_inset
|
||||
|
||||
and the
|
||||
\begin_inset Formula $\beta_{pq}$
|
||||
\end_inset
|
||||
|
||||
-dependent part of
|
||||
\begin_inset Formula $\sigma_{n}^{m(1)}$
|
||||
\end_inset
|
||||
|
||||
is
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}\left(\gamma_{pq}\right)^{2j-1} & = & \left(\beta_{pq}/k\right)^{n-2j}\Gamma\left(\frac{1}{2}-j,\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
|
||||
& \le & \left(\beta_{pq}/k\right)^{n-2j}\left(\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}\right)^{-j-\frac{1}{2}}e^{-\frac{\beta_{pq}^{2}-k^{2}}{4\eta^{2}}}\left(\frac{\beta_{pq}^{2}}{k^{2}}-1\right)^{j-\frac{1}{2}}\\
|
||||
& & TODO
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
|
Loading…
Reference in New Issue