From 4c5cd885984fac1a6ecf8fc3d09c0a0826698456 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Fri, 12 Jul 2019 17:54:25 +0300 Subject: [PATCH] Notes about convention and spherical harmonics transformations. Former-commit-id: ea2b2d52c93c8be0ae8c01ee03c9004380bcba01 --- notes/conventions.md | 61 +++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 60 insertions(+), 1 deletion(-) diff --git a/notes/conventions.md b/notes/conventions.md index b75aa9a..127a11f 100644 --- a/notes/conventions.md +++ b/notes/conventions.md @@ -63,6 +63,66 @@ GSL computes \f$ \rawFer{l}{m} \f$ unless the corresponding `csphase` argument i but can be tested by running `gsl_sf_legendre_array_e` for some specific arguments and comparing signs. +Convention effects on symmetry operators +---------------------------------------- + +### Spherical harmonics + +Let' have two different (complex) spherical harmonic conventions connected by constant factors: +\f[ + \spharm[a]{l}{m} = c^\mathrm{a}_{lm}\spharm{l}{m}. +\f] + +Both sets can be used to describe an angular function \f$ f \f$ +\f[ + f = \sum_{lm} f^\mathrm{a}_{lm} \spharm[a]{l}{m} + = \sum_{lm} f^\mathrm{a}_{lm} c^\mathrm{a}_{lm}\spharm{l}{m} + = \sum_{lm} f_{lm} \spharm{l}{m}. +\f] + +If we perform a (symmetry) transformation \f$ g \f$ acting on the \f$ \spharm{l}{m} \f$ +basis via matrix \f$ D(g)_{l,m;l',m'} \f$, i.e. +\f[ + g\pr{\spharm{l}{m}} = \sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'}, +\f] +we see +\f[ + g(f) = \sum_{lm} f_{lm}\sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'} + = \sum_{lm} f^\mathrm{a}_{lm} c^\mathrm{a}_{lm}\sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'}. +\f] +Rewriting the transformation action in the second basis +\f[ + g\pr{\spharm[a]{l}{m}} = \sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} \spharm[a]{l'}{m'},\\ + g(f) = \sum_{lm} f^\mathrm{a}_{lm}\sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} \spharm[a]{l'}{m'}, +\f] +and performing some substitutions, +\f[ + g(f) = \sum_{lm} \frac{f_{lm}}{c^\mathrm{a}_{lm}} + \sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} c^\mathrm{a}_{l'm'}\spharm{l'}{m'}, +\f] +and comparing, we get +\f[ + D(g)^\mathrm{a}_{l,m;l'm'} = \frac{c^\mathrm{a}_{lm}}{c^\mathrm{a}_{l'm'}}D(g)_{l,m;l'm'}. +\f] + +If the difference between conventions is in particular Condon-Shortley phase, +this means a \f$ (-1)^{m-m'} \f$ factor between the transformation matrices. +This does not affect the matrices for the inversion and +mirror symmetry operations with +respect to the \a xy, \a yz and \a xz planes, because they are all diagonal +or anti-diagonal with respect to \a m (hence \f$ m-m \f$ is either zero +or anyways even integer). +It does, however, affect rotations, flipping the sign of the rotations +along the \a z axis. + +Apparently, a constant complex factor independent of \f$ l,m \f$ +does nothing to the form of the tranformation matrix. + +These conclusions about transformations of spherical harmonics +hold also for the VSWFs built on top of them. + + + Convention effect on translation operators ------------------------------------------ @@ -132,7 +192,6 @@ The remaining matrices' elements must then be obtained as where the coefficients \f$ g_{lm} \f$ can be obtained by qpms_normalisation_factor_N_M(). - Literature convention tables ----------------------------