Notes about convention and spherical harmonics transformations.
Former-commit-id: ea2b2d52c93c8be0ae8c01ee03c9004380bcba01
This commit is contained in:
parent
18767faa03
commit
4c5cd88598
|
@ -63,6 +63,66 @@ GSL computes \f$ \rawFer{l}{m} \f$ unless the corresponding `csphase` argument i
|
||||||
but can be tested by running `gsl_sf_legendre_array_e` for some specific arguments and comparing signs.
|
but can be tested by running `gsl_sf_legendre_array_e` for some specific arguments and comparing signs.
|
||||||
|
|
||||||
|
|
||||||
|
Convention effects on symmetry operators
|
||||||
|
----------------------------------------
|
||||||
|
|
||||||
|
### Spherical harmonics
|
||||||
|
|
||||||
|
Let' have two different (complex) spherical harmonic conventions connected by constant factors:
|
||||||
|
\f[
|
||||||
|
\spharm[a]{l}{m} = c^\mathrm{a}_{lm}\spharm{l}{m}.
|
||||||
|
\f]
|
||||||
|
|
||||||
|
Both sets can be used to describe an angular function \f$ f \f$
|
||||||
|
\f[
|
||||||
|
f = \sum_{lm} f^\mathrm{a}_{lm} \spharm[a]{l}{m}
|
||||||
|
= \sum_{lm} f^\mathrm{a}_{lm} c^\mathrm{a}_{lm}\spharm{l}{m}
|
||||||
|
= \sum_{lm} f_{lm} \spharm{l}{m}.
|
||||||
|
\f]
|
||||||
|
|
||||||
|
If we perform a (symmetry) transformation \f$ g \f$ acting on the \f$ \spharm{l}{m} \f$
|
||||||
|
basis via matrix \f$ D(g)_{l,m;l',m'} \f$, i.e.
|
||||||
|
\f[
|
||||||
|
g\pr{\spharm{l}{m}} = \sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'},
|
||||||
|
\f]
|
||||||
|
we see
|
||||||
|
\f[
|
||||||
|
g(f) = \sum_{lm} f_{lm}\sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'}
|
||||||
|
= \sum_{lm} f^\mathrm{a}_{lm} c^\mathrm{a}_{lm}\sum_{l'm'} D(g)_{l,m;l'm'} \spharm{l'}{m'}.
|
||||||
|
\f]
|
||||||
|
Rewriting the transformation action in the second basis
|
||||||
|
\f[
|
||||||
|
g\pr{\spharm[a]{l}{m}} = \sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} \spharm[a]{l'}{m'},\\
|
||||||
|
g(f) = \sum_{lm} f^\mathrm{a}_{lm}\sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} \spharm[a]{l'}{m'},
|
||||||
|
\f]
|
||||||
|
and performing some substitutions,
|
||||||
|
\f[
|
||||||
|
g(f) = \sum_{lm} \frac{f_{lm}}{c^\mathrm{a}_{lm}}
|
||||||
|
\sum_{l'm'} D(g)^\mathrm{a}_{l,m;l'm'} c^\mathrm{a}_{l'm'}\spharm{l'}{m'},
|
||||||
|
\f]
|
||||||
|
and comparing, we get
|
||||||
|
\f[
|
||||||
|
D(g)^\mathrm{a}_{l,m;l'm'} = \frac{c^\mathrm{a}_{lm}}{c^\mathrm{a}_{l'm'}}D(g)_{l,m;l'm'}.
|
||||||
|
\f]
|
||||||
|
|
||||||
|
If the difference between conventions is in particular Condon-Shortley phase,
|
||||||
|
this means a \f$ (-1)^{m-m'} \f$ factor between the transformation matrices.
|
||||||
|
This does not affect the matrices for the inversion and
|
||||||
|
mirror symmetry operations with
|
||||||
|
respect to the \a xy, \a yz and \a xz planes, because they are all diagonal
|
||||||
|
or anti-diagonal with respect to \a m (hence \f$ m-m \f$ is either zero
|
||||||
|
or anyways even integer).
|
||||||
|
It does, however, affect rotations, flipping the sign of the rotations
|
||||||
|
along the \a z axis.
|
||||||
|
|
||||||
|
Apparently, a constant complex factor independent of \f$ l,m \f$
|
||||||
|
does nothing to the form of the tranformation matrix.
|
||||||
|
|
||||||
|
These conclusions about transformations of spherical harmonics
|
||||||
|
hold also for the VSWFs built on top of them.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Convention effect on translation operators
|
Convention effect on translation operators
|
||||||
------------------------------------------
|
------------------------------------------
|
||||||
|
|
||||||
|
@ -132,7 +192,6 @@ The remaining matrices' elements must then be obtained as
|
||||||
where the coefficients \f$ g_{lm} \f$ can be obtained by
|
where the coefficients \f$ g_{lm} \f$ can be obtained by
|
||||||
qpms_normalisation_factor_N_M().
|
qpms_normalisation_factor_N_M().
|
||||||
|
|
||||||
|
|
||||||
Literature convention tables
|
Literature convention tables
|
||||||
----------------------------
|
----------------------------
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue