From 4d38f64b616441a9d5e662ca047e286aa9f323e3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 20 Nov 2018 09:59:01 +0000 Subject: [PATCH] Formulation of the "simple" 1D problem Former-commit-id: b93a0a851fe2b11e8c226a96cdfc984e14be2ff6 --- notes/ewald.lyx | 72 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/notes/ewald.lyx b/notes/ewald.lyx index c2d5460..143ffc7 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -3758,6 +3758,73 @@ where we used \end_layout +\begin_layout Section +Half-spaces and edge modes +\end_layout + +\begin_layout Subsection +1D +\end_layout + +\begin_layout Standard +Let us first consider the +\begin_inset Quotes eld +\end_inset + +simple +\begin_inset Quotes erd +\end_inset + + case without sublattices, so for example, let a set of identical particles + particles be placed with spacing +\begin_inset Formula $d$ +\end_inset + + on the positive +\begin_inset Formula $z$ +\end_inset + +-halfaxis, so their coordinates are in the set +\begin_inset Formula $C_{0}=C+\left\{ \vect 0\right\} =d\nats\hat{\vect{\mathbf{z}}}+\left\{ \vect 0\right\} $ +\end_inset + +. + The scattering problem on the particle placed at +\begin_inset Formula $\vect n\in C$ +\end_inset + + can then be described in the per-particle-matrix form as +\begin_inset Formula +\[ +p_{\vect n}-p_{\vect n}^{(0)}=\sum_{\vect n'\in C_{0}\backslash\{\vect n\}}S_{\vect n\leftarrow\vect n'}Tp_{\vect n'}, +\] + +\end_inset + +where +\begin_inset Formula $T$ +\end_inset + + is the +\begin_inset Formula $T$ +\end_inset + +-matrix, +\begin_inset Formula $S_{\vect n\leftarrow\vect n'}$ +\end_inset + + the translation operator and +\begin_inset Formula $p_{\vect n}^{(0)}$ +\end_inset + + the expansion of the external exciting fields, which can be set to zero + in order to find the system's eigenmodes. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + \begin_layout Section Major TODOs and open questions \end_layout @@ -3793,6 +3860,11 @@ Find a general algorithm for generating the expressions of the Hankel transforms Three-dimensional case. \end_layout +\end_inset + + +\end_layout + \begin_layout Section (Appendix) Fourier vs. Hankel transform