Finite systems theory almost done.

Former-commit-id: 179d3ac047b53e1f670619409036c8136c6d0f26
This commit is contained in:
Marek Nečada 2019-07-29 15:24:16 +03:00
parent 64e122b937
commit 50651df99b
2 changed files with 209 additions and 1 deletions

View File

@ -274,6 +274,16 @@
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\rcoeff}{a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rcoeffinc}{a^{\mathrm{inc.}}}
\end_inset
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\rcoeffptlm}[4]{\rcoeffp{#1,#2#3#4}} \newcommand{\rcoeffptlm}[4]{\rcoeffp{#1,#2#3#4}}
\end_inset \end_inset
@ -294,6 +304,11 @@
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\outcoeff}{f}
\end_inset
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\outcoeffp}[1]{f_{#1}} \newcommand{\outcoeffp}[1]{f_{#1}}
\end_inset \end_inset
@ -354,6 +369,11 @@
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\truncate}[2]{\left[#1\right]_{#2}}
\end_inset
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\dlmfFer}[2]{\mathsf{P}_{#1}^{#2}} \newcommand{\dlmfFer}[2]{\mathsf{P}_{#1}^{#2}}
\end_inset \end_inset
@ -673,6 +693,10 @@ Consistent notation of balls.
Abstract. Abstract.
\end_layout \end_layout
\begin_layout Itemize
Truncation notation.
\end_layout
\begin_layout Itemize \begin_layout Itemize
Example results. Example results.
\end_layout \end_layout

View File

@ -1014,7 +1014,7 @@ jaksetometuje?
Then the EM field inside each such volume can be expanded in a way similar Then the EM field inside each such volume can be expanded in a way similar
to to
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand ref LatexCommand eqref
reference "eq:E field expansion" reference "eq:E field expansion"
plural "false" plural "false"
caps "false" caps "false"
@ -1083,6 +1083,190 @@ noprefix "false"
\end_inset \end_inset
. .
For each scatterer, we also have its
\begin_inset Formula $T$
\end_inset
-matrix relation as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula
\[
\outcoeffp q=T_{q}\rcoeffp q.
\]
\end_inset
Together with
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:particle total incident field coefficient a"
plural "false"
caps "false"
noprefix "false"
\end_inset
, this gives rise to a set of linear equations
\begin_inset Formula
\begin{equation}
\outcoeffp p-T_{p}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q=T_{p}\rcoeffincp p,\quad p\in\mathcal{P}\label{eq:Multiple-scattering problem}
\end{equation}
\end_inset
which defines the multiple-scattering problem.
If all the
\begin_inset Formula $p,q$
\end_inset
-indexed vectors and matrices (note that without truncation, they are infinite-d
imensional) are arranged into blocks of even larger vectors and matrices,
this can be written in a short-hand form
\begin_inset Formula
\begin{equation}
\left(I-T\trops\right)\outcoeff=T\rcoeffinc\label{eq:Multiple-scattering problem block form}
\end{equation}
\end_inset
where
\begin_inset Formula $I$
\end_inset
is the identity matrix and
\begin_inset Formula $T$
\end_inset
is a block-diagonal matrix containing all the individual
\begin_inset Formula $T$
\end_inset
-matrices.
\end_layout
\begin_layout Standard
In practice, the multiple-scattering problem is solved in its truncated
form, in which all the
\begin_inset Formula $l$
\end_inset
-indices related to a given scatterer
\begin_inset Formula $p$
\end_inset
are truncated as
\begin_inset Formula $l\le L_{p}$
\end_inset
, laeving only
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
\end_inset
different
\begin_inset Formula $\tau lm$
\end_inset
-multiindices left.
The truncation degree can vary for different scatterers (e.g.
due to different physical sizes), so the truncated block
\begin_inset Formula $\tropsp pq$
\end_inset
has shape
\begin_inset Formula $N_{p}\times N_{q}$
\end_inset
, not necessarily square.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Such truncation of the translation operator
\begin_inset Formula $\tropsp pq$
\end_inset
is justified by the fact on the left, TODO
\end_layout
\end_inset
\end_layout
\begin_layout Standard
If no other type of truncation is done, there remain
\begin_inset Formula $2L_{p}\left(L_{p}+2\right)$
\end_inset
different
\begin_inset Formula $\tau lm$
\end_inset
-multiindices for
\begin_inset Formula $p$
\end_inset
-th scatterer, so that the truncated version of the matrix
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
is a square matrix with
\begin_inset Formula $\left(\sum_{p\in\mathcal{P}}N_{p}\right)^{2}$
\end_inset
elements in total.
The truncated problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
can then be solved using standard numerical linear algebra methods.
\end_layout
\begin_layout Standard
Alternatively, the multiple scattering problem can be formulated in terms
of the regular field expansion coefficients,
\begin_inset Formula
\begin{align*}
\rcoeffp p-\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pqT_{q}\rcoeffp q & =\rcoeffincp p,\quad p\in\mathcal{P},\\
\left(I-\trops T\right)\rcoeff & =\rcoeffinc,
\end{align*}
\end_inset
but this form is less suitable for numerical calculations due to the fact
that the regular VSWF expansion coefficients on both sides of the equation
are typically non-negligible even for large multipole degree
\begin_inset Formula $l$
\end_inset
, and the truncation is not justified in this case.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO less bulshit.
\end_layout
\end_inset
\end_layout \end_layout
\begin_layout Subsubsection \begin_layout Subsubsection