Finite systems theory almost done.
Former-commit-id: 179d3ac047b53e1f670619409036c8136c6d0f26
This commit is contained in:
parent
64e122b937
commit
50651df99b
|
@ -274,6 +274,16 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeff}{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffinc}{a^{\mathrm{inc.}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffptlm}[4]{\rcoeffp{#1,#2#3#4}}
|
||||
\end_inset
|
||||
|
@ -294,6 +304,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeff}{f}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeffp}[1]{f_{#1}}
|
||||
\end_inset
|
||||
|
@ -354,6 +369,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\truncate}[2]{\left[#1\right]_{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlmfFer}[2]{\mathsf{P}_{#1}^{#2}}
|
||||
\end_inset
|
||||
|
@ -673,6 +693,10 @@ Consistent notation of balls.
|
|||
Abstract.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Truncation notation.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Example results.
|
||||
\end_layout
|
||||
|
|
|
@ -1014,7 +1014,7 @@ jaksetometuje?
|
|||
Then the EM field inside each such volume can be expanded in a way similar
|
||||
to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:E field expansion"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1083,6 +1083,190 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
For each scatterer, we also have its
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix relation as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\outcoeffp q=T_{q}\rcoeffp q.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Together with
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:particle total incident field coefficient a"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, this gives rise to a set of linear equations
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\outcoeffp p-T_{p}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q=T_{p}\rcoeffincp p,\quad p\in\mathcal{P}\label{eq:Multiple-scattering problem}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
which defines the multiple-scattering problem.
|
||||
If all the
|
||||
\begin_inset Formula $p,q$
|
||||
\end_inset
|
||||
|
||||
-indexed vectors and matrices (note that without truncation, they are infinite-d
|
||||
imensional) are arranged into blocks of even larger vectors and matrices,
|
||||
this can be written in a short-hand form
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-T\trops\right)\outcoeff=T\rcoeffinc\label{eq:Multiple-scattering problem block form}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $I$
|
||||
\end_inset
|
||||
|
||||
is the identity matrix and
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
is a block-diagonal matrix containing all the individual
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In practice, the multiple-scattering problem is solved in its truncated
|
||||
form, in which all the
|
||||
\begin_inset Formula $l$
|
||||
\end_inset
|
||||
|
||||
-indices related to a given scatterer
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
are truncated as
|
||||
\begin_inset Formula $l\le L_{p}$
|
||||
\end_inset
|
||||
|
||||
, laeving only
|
||||
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
|
||||
\end_inset
|
||||
|
||||
different
|
||||
\begin_inset Formula $\tau lm$
|
||||
\end_inset
|
||||
|
||||
-multiindices left.
|
||||
The truncation degree can vary for different scatterers (e.g.
|
||||
due to different physical sizes), so the truncated block
|
||||
\begin_inset Formula $\tropsp pq$
|
||||
\end_inset
|
||||
|
||||
has shape
|
||||
\begin_inset Formula $N_{p}\times N_{q}$
|
||||
\end_inset
|
||||
|
||||
, not necessarily square.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Such truncation of the translation operator
|
||||
\begin_inset Formula $\tropsp pq$
|
||||
\end_inset
|
||||
|
||||
is justified by the fact on the left, TODO
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If no other type of truncation is done, there remain
|
||||
\begin_inset Formula $2L_{p}\left(L_{p}+2\right)$
|
||||
\end_inset
|
||||
|
||||
different
|
||||
\begin_inset Formula $\tau lm$
|
||||
\end_inset
|
||||
|
||||
-multiindices for
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
-th scatterer, so that the truncated version of the matrix
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
is a square matrix with
|
||||
\begin_inset Formula $\left(\sum_{p\in\mathcal{P}}N_{p}\right)^{2}$
|
||||
\end_inset
|
||||
|
||||
elements in total.
|
||||
The truncated problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can then be solved using standard numerical linear algebra methods.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Alternatively, the multiple scattering problem can be formulated in terms
|
||||
of the regular field expansion coefficients,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\rcoeffp p-\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pqT_{q}\rcoeffp q & =\rcoeffincp p,\quad p\in\mathcal{P},\\
|
||||
\left(I-\trops T\right)\rcoeff & =\rcoeffinc,
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
but this form is less suitable for numerical calculations due to the fact
|
||||
that the regular VSWF expansion coefficients on both sides of the equation
|
||||
are typically non-negligible even for large multipole degree
|
||||
\begin_inset Formula $l$
|
||||
\end_inset
|
||||
|
||||
, and the truncation is not justified in this case.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO less bulshit.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
|
|
Loading…
Reference in New Issue