Replace original netlib amos routines with those in scipy.

Note: apparently, one could also use amos from openspecfun
https://github.com/JuliaMath/openspecfun

Former-commit-id: 77d61fe6486803684201480410021fd173172cc0
This commit is contained in:
Marek Nečada 2019-03-20 12:25:42 +02:00
parent e6e7485ebb
commit 522a6d9b85
31 changed files with 1117 additions and 172 deletions

31
amos/README.md Normal file
View File

@ -0,0 +1,31 @@
# AMOS
A Portable Package for Bessel Functions of a Complex Argument
and Nonnegative Order
This algorithm is a package of subroutines for computing Bessel
functions and Airy functions. The routines are updated
versions of those routines found in TOMS algorithm 644.
## Disclaimer
```
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* ISSUED BY SANDIA LABORATORIES,
* A PRIME CONTRACTOR TO THE
* UNITED STATES DEPARTMENT OF ENERGY
* * * * * * * * * * * * * * NOTICE * * * * * * * * * * * * * * *
* THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE
* UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES NOR THE
* UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF THEIR
* EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR
* EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
* LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS
* OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT OR PROCESS
* DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
* PRIVATELY OWNED RIGHTS.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THIS CODE HAS BEEN APPROVED FOR UNLIMITED RELEASE.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
```

View File

@ -1,12 +1,12 @@
DOUBLE PRECISION FUNCTION ZABS(ZR, ZI) DOUBLE PRECISION FUNCTION AZABS(ZR, ZI)
C***BEGIN PROLOGUE ZABS C***BEGIN PROLOGUE AZABS
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C C
C ZABS COMPUTES THE ABSOLUTE VALUE OR MAGNITUDE OF A DOUBLE C AZABS COMPUTES THE ABSOLUTE VALUE OR MAGNITUDE OF A DOUBLE
C PRECISION COMPLEX VARIABLE CMPLX(ZR,ZI) C PRECISION COMPLEX VARIABLE CMPLX(ZR,ZI)
C C
C***ROUTINES CALLED (NONE) C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZABS C***END PROLOGUE AZABS
DOUBLE PRECISION ZR, ZI, U, V, Q, S DOUBLE PRECISION ZR, ZI, U, V, Q, S
U = DABS(ZR) U = DABS(ZR)
V = DABS(ZI) V = DABS(ZI)
@ -19,11 +19,11 @@ C-----------------------------------------------------------------------
IF (S.EQ.0.0D+0) GO TO 20 IF (S.EQ.0.0D+0) GO TO 20
IF (U.GT.V) GO TO 10 IF (U.GT.V) GO TO 10
Q = U/V Q = U/V
ZABS = V*DSQRT(1.D+0+Q*Q) AZABS = V*DSQRT(1.D+0+Q*Q)
RETURN RETURN
10 Q = V/U 10 Q = V/U
ZABS = U*DSQRT(1.D+0+Q*Q) AZABS = U*DSQRT(1.D+0+Q*Q)
RETURN RETURN
20 ZABS = 0.0D+0 20 AZABS = 0.0D+0
RETURN RETURN
END END

View File

@ -14,19 +14,19 @@ C ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND
C RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON C RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT IF ZACON
C IS CALLED FROM ZAIRY. C IS CALLED FROM ZAIRY.
C C
C***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,ZABS C***ROUTINES CALLED ZASYI,ZBKNU,ZMLRI,ZSERI,ZS1S2,D1MACH,AZABS
C***END PROLOGUE ZACAI C***END PROLOGUE ZACAI
C COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY C COMPLEX CSGN,CSPN,C1,C2,Y,Z,ZN,CY
DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR, DOUBLE PRECISION ALIM, ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR,
* CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI, * CSPNI, C1R, C1I, C2R, C2I, CYR, CYI, DFNU, ELIM, FMR, FNU, PI,
* RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI, D1MACH, ZABS * RL, SGN, TOL, YY, YR, YI, ZR, ZI, ZNR, ZNI, D1MACH, AZABS
INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2) DIMENSION YR(N), YI(N), CYR(2), CYI(2)
DATA PI / 3.14159265358979324D0 / DATA PI / 3.14159265358979324D0 /
NZ = 0 NZ = 0
ZNR = -ZR ZNR = -ZR
ZNI = -ZI ZNI = -ZI
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
NN = N NN = N
DFNU = FNU + DBLE(FLOAT(N-1)) DFNU = FNU + DBLE(FLOAT(N-1))
IF (AZ.LE.2.0D0) GO TO 10 IF (AZ.LE.2.0D0) GO TO 10

View File

@ -11,7 +11,7 @@ C
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
C HALF Z PLANE C HALF Z PLANE
C C
C***ROUTINES CALLED ZBINU,ZBKNU,ZS1S2,D1MACH,ZABS,ZMLT C***ROUTINES CALLED ZBINU,ZBKNU,ZS1S2,D1MACH,AZABS,ZMLT
C***END PROLOGUE ZACON C***END PROLOGUE ZACON
C COMPLEX CK,CONE,CSCL,CSCR,CSGN,CSPN,CY,CZERO,C1,C2,RZ,SC1,SC2,ST, C COMPLEX CK,CONE,CSCL,CSCR,CSGN,CSPN,CY,CZERO,C1,C2,RZ,SC1,SC2,ST,
C *S1,S2,Y,Z,ZN C *S1,S2,Y,Z,ZN
@ -20,7 +20,7 @@ C *S1,S2,Y,Z,ZN
* CSR, CSRR, CSSR, CYI, CYR, C1I, C1M, C1R, C2I, C2R, ELIM, FMR, * CSR, CSRR, CSSR, CYI, CYR, C1I, C1M, C1R, C2I, C2R, ELIM, FMR,
* FN, FNU, FNUL, PI, PTI, PTR, RAZN, RL, RZI, RZR, SC1I, SC1R, * FN, FNU, FNUL, PI, PTI, PTR, RAZN, RL, RZI, RZR, SC1I, SC1R,
* SC2I, SC2R, SGN, SPN, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, * SC2I, SC2R, SGN, SPN, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR,
* YY, ZEROR, ZI, ZNI, ZNR, ZR, D1MACH, ZABS * YY, ZEROR, ZI, ZNI, ZNR, ZR, D1MACH, AZABS
INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ INTEGER I, INU, IUF, KFLAG, KODE, MR, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2), CSSR(3), CSRR(3), BRY(3) DIMENSION YR(N), YI(N), CYR(2), CYI(2), CSSR(3), CSRR(3), BRY(3)
DATA PI / 3.14159265358979324D0 / DATA PI / 3.14159265358979324D0 /
@ -102,7 +102,7 @@ C-----------------------------------------------------------------------
IF (N.EQ.2) RETURN IF (N.EQ.2) RETURN
CSPNR = -CSPNR CSPNR = -CSPNR
CSPNI = -CSPNI CSPNI = -CSPNI
AZN = ZABS(ZNR,ZNI) AZN = AZABS(ZNR,ZNI)
RAZN = 1.0D0/AZN RAZN = 1.0D0/AZN
STR = ZNR*RAZN STR = ZNR*RAZN
STI = -ZNI*RAZN STI = -ZNI*RAZN
@ -125,7 +125,7 @@ C-----------------------------------------------------------------------
BRY(1) = ASCLE BRY(1) = ASCLE
BRY(2) = 1.0D0/ASCLE BRY(2) = 1.0D0/ASCLE
BRY(3) = D1MACH(2) BRY(3) = D1MACH(2)
AS2 = ZABS(S2R,S2I) AS2 = AZABS(S2R,S2I)
KFLAG = 2 KFLAG = 2
IF (AS2.GT.BRY(1)) GO TO 50 IF (AS2.GT.BRY(1)) GO TO 50
KFLAG = 1 KFLAG = 1

View File

@ -19,7 +19,7 @@ C
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS. C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1). C MATHEMATICAL FUNCTIONS (REF. 1).
C C
C INPUT ZR,ZI ARE DOUBLE PRECISION C INPUT ZR,ZI ARE DOUBLE PRECISION
@ -124,14 +124,14 @@ C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986 C MATH. SOFTWARE, 1986
C C
C***ROUTINES CALLED ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH C***ROUTINES CALLED ZACAI,ZBKNU,AZEXP,AZSQRT,I1MACH,D1MACH
C***END PROLOGUE ZAIRY C***END PROLOGUE ZAIRY
C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3 C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK, DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
* CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG, * CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
* DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR, * DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
* S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI, * S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
* ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB * ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS, ALAZ, BB
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
DIMENSION CYR(1), CYI(1) DIMENSION CYR(1), CYI(1)
DATA TTH, C1, C2, COEF /6.66666666666666667D-01, DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
@ -144,7 +144,7 @@ C***FIRST EXECUTABLE STATEMENT ZAIRY
IF (ID.LT.0 .OR. ID.GT.1) IERR=1 IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN IF (IERR.NE.0) RETURN
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
TOL = DMAX1(D1MACH(4),1.0D-18) TOL = DMAX1(D1MACH(4),1.0D-18)
FID = DBLE(FLOAT(ID)) FID = DBLE(FLOAT(ID))
IF (AZ.GT.1.0D0) GO TO 70 IF (AZ.GT.1.0D0) GO TO 70
@ -201,10 +201,10 @@ C-----------------------------------------------------------------------
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I) AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R) AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI) CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI) ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR) ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI) CALL AZEXP(ZTAR, ZTAI, STR, STI)
PTR = AIR*STR - AII*STI PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR AII = AIR*STI + AII*STR
AIR = PTR AIR = PTR
@ -220,10 +220,10 @@ C-----------------------------------------------------------------------
AII = AII + CC*(STR*ZI+STI*ZR) AII = AII + CC*(STR*ZI+STI*ZR)
60 CONTINUE 60 CONTINUE
IF (KODE.EQ.1) RETURN IF (KODE.EQ.1) RETURN
CALL ZSQRT(ZR, ZI, STR, STI) CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI) ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR) ZTAI = TTH*(ZR*STI+ZI*STR)
CALL ZEXP(ZTAR, ZTAI, STR, STI) CALL AZEXP(ZTAR, ZTAI, STR, STI)
PTR = STR*AIR - STI*AII PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR AII = STR*AII + STI*AIR
AIR = PTR AIR = PTR
@ -265,7 +265,7 @@ C-----------------------------------------------------------------------
IF (AZ.GT.AA) GO TO 260 IF (AZ.GT.AA) GO TO 260
AA=DSQRT(AA) AA=DSQRT(AA)
IF (AZ.GT.AA) IERR=3 IF (AZ.GT.AA) IERR=3
CALL ZSQRT(ZR, ZI, CSQR, CSQI) CALL AZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI) ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR) ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C----------------------------------------------------------------------- C-----------------------------------------------------------------------

View File

@ -8,21 +8,21 @@ C MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE
C REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN. C REGION CABS(Z).GT.MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL RETURN.
C NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1. C NZ.LT.0 INDICATES AN OVERFLOW ON KODE=1.
C C
C***ROUTINES CALLED D1MACH,ZABS,ZDIV,ZEXP,ZMLT,ZSQRT C***ROUTINES CALLED D1MACH,AZABS,ZDIV,AZEXP,ZMLT,AZSQRT
C***END PROLOGUE ZASYI C***END PROLOGUE ZASYI
C COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z C COMPLEX AK1,CK,CONE,CS1,CS2,CZ,CZERO,DK,EZ,P1,RZ,S2,Y,Z
DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL, DOUBLE PRECISION AA, AEZ, AK, AK1I, AK1R, ALIM, ARG, ARM, ATOL,
* AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI, * AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI,
* CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I, * CZR, DFNU, DKI, DKR, DNU2, ELIM, EZI, EZR, FDN, FNU, PI, P1I,
* P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I, * P1R, RAZ, RL, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I,
* S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR, D1MACH, ZABS * S2R, TOL, TZI, TZR, YI, YR, ZEROI, ZEROR, ZI, ZR, D1MACH, AZABS
INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ INTEGER I, IB, IL, INU, J, JL, K, KODE, KODED, M, N, NN, NZ
DIMENSION YR(N), YI(N) DIMENSION YR(N), YI(N)
DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 / DATA PI, RTPI /3.14159265358979324D0 , 0.159154943091895336D0 /
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
C C
NZ = 0 NZ = 0
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
ARM = 1.0D+3*D1MACH(1) ARM = 1.0D+3*D1MACH(1)
RTR1 = DSQRT(ARM) RTR1 = DSQRT(ARM)
IL = MIN0(2,N) IL = MIN0(2,N)
@ -35,7 +35,7 @@ C-----------------------------------------------------------------------
STI = -ZI*RAZ STI = -ZI*RAZ
AK1R = RTPI*STR*RAZ AK1R = RTPI*STR*RAZ
AK1I = RTPI*STI*RAZ AK1I = RTPI*STI*RAZ
CALL ZSQRT(AK1R, AK1I, AK1R, AK1I) CALL AZSQRT(AK1R, AK1I, AK1R, AK1I)
CZR = ZR CZR = ZR
CZI = ZI CZI = ZI
IF (KODE.NE.2) GO TO 10 IF (KODE.NE.2) GO TO 10
@ -47,7 +47,7 @@ C-----------------------------------------------------------------------
KODED = 1 KODED = 1
IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20 IF ((DABS(CZR).GT.ALIM) .AND. (N.GT.2)) GO TO 20
KODED = 0 KODED = 0
CALL ZEXP(CZR, CZI, STR, STI) CALL AZEXP(CZR, CZI, STR, STI)
CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I) CALL ZMLT(AK1R, AK1I, STR, STI, AK1R, AK1I)
20 CONTINUE 20 CONTINUE
FDN = 0.0D0 FDN = 0.0D0
@ -120,7 +120,7 @@ C-----------------------------------------------------------------------
IF (ZR+ZR.GE.ELIM) GO TO 60 IF (ZR+ZR.GE.ELIM) GO TO 60
TZR = ZR + ZR TZR = ZR + ZR
TZI = ZI + ZI TZI = ZI + ZI
CALL ZEXP(-TZR, -TZI, STR, STI) CALL AZEXP(-TZR, -TZI, STR, STI)
CALL ZMLT(STR, STI, P1R, P1I, STR, STI) CALL ZMLT(STR, STI, P1R, P1I, STR, STI)
CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI) CALL ZMLT(STR, STI, CS2R, CS2I, STR, STI)
S2R = S2R + STR S2R = S2R + STR
@ -149,7 +149,7 @@ C-----------------------------------------------------------------------
K = K - 1 K = K - 1
80 CONTINUE 80 CONTINUE
IF (KODED.EQ.0) RETURN IF (KODED.EQ.0) RETURN
CALL ZEXP(CZR, CZI, CKR, CKI) CALL AZEXP(CZR, CZI, CKR, CKI)
DO 90 I=1,NN DO 90 I=1,NN
STR = YR(I)*CKR - YI(I)*CKI STR = YR(I)*CKR - YI(I)*CKI
YI(I) = YR(I)*CKI + YI(I)*CKR YI(I) = YR(I)*CKI + YI(I)*CKR

View File

@ -152,13 +152,13 @@ C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986 C MATH. SOFTWARE, 1986
C C
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
C***END PROLOGUE ZBESH C***END PROLOGUE ZBESH
C C
C COMPLEX CY,Z,ZN,ZT,CSGN C COMPLEX CY,Z,ZN,ZT,CSGN
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM,
* FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI, * FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI,
* ZNI, ZNR, ZR, ZTI, D1MACH, ZABS, BB, ASCLE, RTOL, ATOL, STI, * ZNI, ZNR, ZR, ZTI, D1MACH, AZABS, BB, ASCLE, RTOL, ATOL, STI,
* CSGNR, CSGNI * CSGNR, CSGNI
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M, INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M,
* MM, MR, N, NN, NUF, NW, NZ, I1MACH * MM, MR, N, NN, NUF, NW, NZ, I1MACH
@ -208,7 +208,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C TEST FOR PROPER RANGE C TEST FOR PROPER RANGE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
AA = 0.5D0/TOL AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB) AA = DMIN1(AA,BB)

269
amos/zbesi.f Normal file
View File

@ -0,0 +1,269 @@
SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESI
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C MODIFIED BESSEL FUNCTION OF THE FIRST KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
C FUNCTIONS
C
C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z)
C
C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(J)=I(FNU+J-1,Z), J=1,...,N
C = 2 RETURNS
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(J)=I(FNU+J-1,Z) OR
C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N
C DEPENDING ON KODE, X=REAL(Z)
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
C J = N-NZ+1,...,N
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO
C LARGE ON KODE=1
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
C
C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
C
C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0
C M = +I OR -I, I**2=-1
C
C FOR NEGATIVE ORDERS,THE FORMULA
C
C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
C
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
C LARGE MEANS FNU.GT.CABS(Z).
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
C***END PROLOGUE ZBESI
C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
* CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
* ZR, D1MACH, AZ, BB, FN, AZABS, ASCLE, RTOL, ATOL, STI
INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
DIMENSION CYR(N), CYI(N)
DATA PI /3.14159265358979324D0/
DATA CONER, CONEI /1.0D0,0.0D0/
C
C***FIRST EXECUTABLE STATEMENT ZBESI
IERR = 0
NZ=0
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = AZABS(ZR,ZI)
FN = FNU+DBLE(FLOAT(N-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
ZNR = ZR
ZNI = ZI
CSGNR = CONER
CSGNI = CONEI
IF (ZR.GE.0.0D0) GO TO 40
ZNR = -ZR
ZNI = -ZI
C-----------------------------------------------------------------------
C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C WHEN FNU IS LARGE
C-----------------------------------------------------------------------
INU = INT(SNGL(FNU))
ARG = (FNU-DBLE(FLOAT(INU)))*PI
IF (ZI.LT.0.0D0) ARG = -ARG
CSGNR = DCOS(ARG)
CSGNI = DSIN(ARG)
IF (MOD(INU,2).EQ.0) GO TO 40
CSGNR = -CSGNR
CSGNI = -CSGNI
40 CONTINUE
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NZ.LT.0) GO TO 120
IF (ZR.GE.0.0D0) RETURN
C-----------------------------------------------------------------------
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
C-----------------------------------------------------------------------
NN = N - NZ
IF (NN.EQ.0) RETURN
RTOL = 1.0D0/TOL
ASCLE = D1MACH(1)*RTOL*1.0D+3
DO 50 I=1,NN
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
C CYR(I) = STR
AA = CYR(I)
BB = CYI(I)
ATOL = 1.0D0
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
AA = AA*RTOL
BB = BB*RTOL
ATOL = TOL
55 CONTINUE
STR = AA*CSGNR - BB*CSGNI
STI = AA*CSGNI + BB*CSGNR
CYR(I) = STR*ATOL
CYI(I) = STI*ATOL
CSGNR = -CSGNR
CSGNI = -CSGNI
50 CONTINUE
RETURN
120 CONTINUE
IF(NZ.EQ.(-2)) GO TO 130
NZ = 0
IERR=2
RETURN
130 CONTINUE
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View File

@ -147,7 +147,7 @@ C
C COMPLEX CI,CSGN,CY,Z,ZN C COMPLEX CI,CSGN,CY,Z,ZN
DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG, DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
* ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR, * ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
* D1MACH, BB, FN, AZ, ZABS, ASCLE, RTOL, ATOL, STI * D1MACH, BB, FN, AZ, AZABS, ASCLE, RTOL, ATOL, STI
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
DIMENSION CYR(N), CYI(N) DIMENSION CYR(N), CYI(N)
DATA HPI /1.57079632679489662D0/ DATA HPI /1.57079632679489662D0/
@ -186,7 +186,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C TEST FOR PROPER RANGE C TEST FOR PROPER RANGE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
FN = FNU+DBLE(FLOAT(N-1)) FN = FNU+DBLE(FLOAT(N-1))
AA = 0.5D0/TOL AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0 BB=DBLE(FLOAT(I1MACH(9)))*0.5D0

281
amos/zbesk.f Normal file
View File

@ -0,0 +1,281 @@
SUBROUTINE ZBESK(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESK
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
C BESSEL FUNCTION OF THE THIRD KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C
C ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
C IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
C RETURNS THE SCALED K FUNCTIONS,
C
C CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
C
C WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
C NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
C FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(I)=K(FNU+I-1,Z), I=1,...,N
C = 2 RETURNS
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(I)=K(FNU+I-1,Z), I=1,...,N OR
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C DEPENDING ON KODE
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
C I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
C NZ STATES ONLY THE NUMBER OF UNDERFLOWS
C IN THE SEQUENCE.
C
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
C DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
C RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
C HALF PLANE BY THE RELATION
C
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
C
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
C
C FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
C BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
C
C FOR NEGATIVE ORDERS, THE FORMULA
C
C K(-FNU,Z) = K(FNU,Z)
C
C CAN BE USED.
C
C CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
C AVAILABLE.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
C***END PROLOGUE ZBESK
C
C COMPLEX CY,Z
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, FN,
* FNU, FNUL, RL, R1M5, TOL, UFL, ZI, ZR, D1MACH, AZABS, BB
INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
DIMENSION CYR(N), CYI(N)
C***FIRST EXECUTABLE STATEMENT ZBESK
IERR = 0
NZ=0
IF (ZI.EQ.0.0E0 .AND. ZR.EQ.0.0E0) IERR=1
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
NN = N
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
RL = 1.2D0*DIG + 3.0D0
C-----------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = AZABS(ZR,ZI)
FN = FNU + DBLE(FLOAT(NN-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
C-----------------------------------------------------------------------
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
C-----------------------------------------------------------------------
C UFL = DEXP(-ELIM)
UFL = D1MACH(1)*1.0D+3
IF (AZ.LT.UFL) GO TO 180
IF (FNU.GT.FNUL) GO TO 80
IF (FN.LE.1.0D0) GO TO 60
IF (FN.GT.2.0D0) GO TO 50
IF (AZ.GT.TOL) GO TO 60
ARG = 0.5D0*AZ
ALN = -FN*DLOG(ARG)
IF (ALN.GT.ELIM) GO TO 180
GO TO 60
50 CONTINUE
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
* ALIM)
IF (NUF.LT.0) GO TO 180
NZ = NZ + NUF
NN = NN - NUF
C-----------------------------------------------------------------------
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
C-----------------------------------------------------------------------
IF (NN.EQ.0) GO TO 100
60 CONTINUE
IF (ZR.LT.0.0D0) GO TO 70
C-----------------------------------------------------------------------
C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
C-----------------------------------------------------------------------
CALL ZBKNU(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C LEFT HALF PLANE COMPUTATION
C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
C-----------------------------------------------------------------------
70 CONTINUE
IF (NZ.NE.0) GO TO 180
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACON(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
* TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
C-----------------------------------------------------------------------
80 CONTINUE
MR = 0
IF (ZR.GE.0.0D0) GO TO 90
MR = 1
IF (ZI.LT.0.0D0) MR = -1
90 CONTINUE
CALL ZBUNK(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 200
NZ = NZ + NW
RETURN
100 CONTINUE
IF (ZR.LT.0.0D0) GO TO 180
RETURN
180 CONTINUE
NZ = 0
IERR=2
RETURN
200 CONTINUE
IF(NW.EQ.(-1)) GO TO 180
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END

View File

@ -5,16 +5,16 @@ C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZAIRY,ZBIRY
C C
C ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE C ZBINU COMPUTES THE I FUNCTION IN THE RIGHT HALF Z PLANE
C C
C***ROUTINES CALLED ZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK C***ROUTINES CALLED AZABS,ZASYI,ZBUNI,ZMLRI,ZSERI,ZUOIK,ZWRSK
C***END PROLOGUE ZBINU C***END PROLOGUE ZBINU
DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU, DOUBLE PRECISION ALIM, AZ, CWI, CWR, CYI, CYR, DFNU, ELIM, FNU,
* FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR, ZABS * FNUL, RL, TOL, ZEROI, ZEROR, ZI, ZR, AZABS
INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ INTEGER I, INW, KODE, N, NLAST, NN, NUI, NW, NZ
DIMENSION CYR(N), CYI(N), CWR(2), CWI(2) DIMENSION CYR(N), CYI(N), CWR(2), CWI(2)
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
C C
NZ = 0 NZ = 0
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
NN = N NN = N
DFNU = FNU + DBLE(FLOAT(N-1)) DFNU = FNU + DBLE(FLOAT(N-1))
IF (AZ.LE.2.0D0) GO TO 10 IF (AZ.LE.2.0D0) GO TO 10

364
amos/zbiry.f Normal file
View File

@ -0,0 +1,364 @@
SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
C***BEGIN PROLOGUE ZBIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
C ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
C DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
C BOTH THE LEFT AND RIGHT HALF PLANES WHERE
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C BI=BI(Z) ON ID=0 OR
C BI=DBI(Z)/DZ ON ID=1
C = 2 RETURNS
C BI=CEXP(-AXZTA)*BI(Z) ON ID=0 OR
C BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
C AND AXZTA=ABS(XZTA)
C
C OUTPUT BIR,BII ARE DOUBLE PRECISION
C BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
C FUNCTIONS BY
C
C BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
C DBI(Z)=C * Z * ( I(-2/3,ZTA) + I(2/3,ZTA) )
C C=1.0/SQRT(3.0)
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZBINU,AZABS,ZDIV,AZSQRT,D1MACH,I1MACH
C***END PROLOGUE ZBIRY
C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
* BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
* DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
* SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
* TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS
INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
DIMENSION CYR(2), CYI(2)
DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
* 6.14926627446000736D-01,4.48288357353826359D-01,
* 5.77350269189625765D-01,3.14159265358979324D+00/
DATA CONER, CONEI /1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT ZBIRY
IERR = 0
NZ=0
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN
AZ = AZABS(ZR,ZI)
TOL = DMAX1(D1MACH(4),1.0D-18)
FID = DBLE(FLOAT(ID))
IF (AZ.GT.1.0E0) GO TO 70
C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
IF (AZ.LT.TOL) GO TO 130
AA = AZ*AZ
IF (AA.LT.TOL/AZ) GO TO 40
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0D0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ*AA
AK = 2.0D0 + FID
BK = 3.0D0 - FID - FID
CK = 4.0D0 - FID
DK = 3.0D0 + FID + FID
D1 = AK*DK
D2 = BK*CK
AD = DMIN1(D1,D2)
AK = 24.0D0 + 9.0D0*FID
BK = 30.0D0 - 9.0D0*FID
DO 30 K=1,25
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM*AZ3/AD
D1 = D1 + AK
D2 = D2 + BK
AD = DMIN1(D1,D2)
IF (ATRM.LT.TOL*AD) GO TO 40
AK = AK + 18.0D0
BK = BK + 18.0D0
30 CONTINUE
40 CONTINUE
IF (ID.EQ.1) GO TO 50
BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN
CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
AA = ZTAR
AA = -DABS(AA)
EAA = DEXP(AA)
BIR = BIR*EAA
BII = BII*EAA
RETURN
50 CONTINUE
BIR = S2R*C2
BII = S2I*C2
IF (AZ.LE.TOL) GO TO 60
CC = C1/(1.0D0+FID)
STR = S1R*ZR - S1I*ZI
STI = S1R*ZI + S1I*ZR
BIR = BIR + CC*(STR*ZR-STI*ZI)
BII = BII + CC*(STR*ZI+STI*ZR)
60 CONTINUE
IF (KODE.EQ.1) RETURN
CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
AA = ZTAR
AA = -DABS(AA)
EAA = DEXP(AA)
BIR = BIR*EAA
BII = BII*EAA
RETURN
C-----------------------------------------------------------------------
C CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
70 CONTINUE
FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------
C TEST FOR RANGE
C-----------------------------------------------------------------------
AA=0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA=DMIN1(AA,BB)
AA=AA**TTH
IF (AZ.GT.AA) GO TO 260
AA=DSQRT(AA)
IF (AZ.GT.AA) IERR=3
CALL AZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
SFAC = 1.0D0
AK = ZTAI
IF (ZR.GE.0.0D0) GO TO 80
BK = ZTAR
CK = -DABS(BK)
ZTAR = CK
ZTAI = AK
80 CONTINUE
IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
ZTAR = 0.0D0
ZTAI = AK
90 CONTINUE
AA = ZTAR
IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
BB = DABS(AA)
IF (BB.LT.ALIM) GO TO 100
BB = BB + 0.25D0*DLOG(AZ)
SFAC = TOL
IF (BB.GT.ELIM) GO TO 190
100 CONTINUE
FMR = 0.0D0
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
FMR = PI
IF (ZI.LT.0.0D0) FMR = -PI
ZTAR = -ZTAR
ZTAI = -ZTAI
110 CONTINUE
C-----------------------------------------------------------------------
C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
C-----------------------------------------------------------------------
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
IF (NZ.LT.0) GO TO 200
AA = FMR*FNU
Z3R = SFAC
STR = DCOS(AA)
STI = DSIN(AA)
S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
FNU = (2.0D0-FID)/3.0D0
CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
* ELIM, ALIM)
CYR(1) = CYR(1)*Z3R
CYI(1) = CYI(1)*Z3R
CYR(2) = CYR(2)*Z3R
CYI(2) = CYI(2)*Z3R
C-----------------------------------------------------------------------
C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
C-----------------------------------------------------------------------
CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
S2R = (FNU+FNU)*STR + CYR(2)
S2I = (FNU+FNU)*STI + CYI(2)
AA = FMR*(FNU-1.0D0)
STR = DCOS(AA)
STI = DSIN(AA)
S1R = COEF*(S1R+S2R*STR-S2I*STI)
S1I = COEF*(S1I+S2R*STI+S2I*STR)
IF (ID.EQ.1) GO TO 120
STR = CSQR*S1R - CSQI*S1I
S1I = CSQR*S1I + CSQI*S1R
S1R = STR
BIR = S1R/SFAC
BII = S1I/SFAC
RETURN
120 CONTINUE
STR = ZR*S1R - ZI*S1I
S1I = ZR*S1I + ZI*S1R
S1R = STR
BIR = S1R/SFAC
BII = S1I/SFAC
RETURN
130 CONTINUE
AA = C1*(1.0D0-FID) + FID*C2
BIR = AA
BII = 0.0D0
RETURN
190 CONTINUE
IERR=2
NZ=0
RETURN
200 CONTINUE
IF(NZ.EQ.(-1)) GO TO 190
NZ=0
IERR=5
RETURN
260 CONTINUE
IERR=4
NZ=0
RETURN
END

View File

@ -5,8 +5,8 @@ C***REFER TO ZBESI,ZBESK,ZAIRY,ZBESH
C C
C ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE. C ZBKNU COMPUTES THE K BESSEL FUNCTION IN THE RIGHT HALF Z PLANE.
C C
C***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,ZABS,ZDIV, C***ROUTINES CALLED DGAMLN,I1MACH,D1MACH,ZKSCL,ZSHCH,ZUCHK,AZABS,ZDIV,
C ZEXP,ZLOG,ZMLT,ZSQRT C AZEXP,AZLOG,ZMLT,AZSQRT
C***END PROLOGUE ZBKNU C***END PROLOGUE ZBKNU
C C
DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ, DOUBLE PRECISION AA, AK, ALIM, ASCLE, A1, A2, BB, BK, BRY, CAZ,
@ -16,7 +16,7 @@ C
* FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI, * FI, FK, FKS, FMUI, FMUR, FNU, FPI, FR, G1, G2, HPI, PI, PR, PTI,
* PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI, * PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI,
* RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM, * RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM,
* TOL, TTH, T1, T2, YI, YR, ZI, ZR, DGAMLN, D1MACH, ZABS, ELM, * TOL, TTH, T1, T2, YI, YR, ZI, ZR, DGAMLN, D1MACH, AZABS, ELM,
* CELMR, ZDR, ZDI, AS, ALAS, HELIM, CYR, CYI * CELMR, ZDR, ZDI, AS, ALAS, HELIM, CYR, CYI
INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ, INTEGER I, IFLAG, INU, K, KFLAG, KK, KMAX, KODE, KODED, N, NZ,
* IDUM, I1MACH, J, IC, INUB, NW * IDUM, I1MACH, J, IC, INUB, NW
@ -38,7 +38,7 @@ C
3 -2.15241674114950973D-04, -2.01348547807882387D-05, 3 -2.15241674114950973D-04, -2.01348547807882387D-05,
4 1.13302723198169588D-06, 6.11609510448141582D-09/ 4 1.13302723198169588D-06, 6.11609510448141582D-09/
C C
CAZ = ZABS(ZR,ZI) CAZ = AZABS(ZR,ZI)
CSCLR = 1.0D0/TOL CSCLR = 1.0D0/TOL
CRSCR = TOL CRSCR = TOL
CSSR(1) = CSCLR CSSR(1) = CSCLR
@ -68,7 +68,7 @@ C-----------------------------------------------------------------------
C SERIES FOR CABS(Z).LE.R1 C SERIES FOR CABS(Z).LE.R1
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
FC = 1.0D0 FC = 1.0D0
CALL ZLOG(RZR, RZI, SMUR, SMUI, IDUM) CALL AZLOG(RZR, RZI, SMUR, SMUI, IDUM)
FMUR = SMUR*DNU FMUR = SMUR*DNU
FMUI = SMUI*DNU FMUI = SMUI*DNU
CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI) CALL ZSHCH(FMUR, FMUI, CSHR, CSHI, CCHR, CCHI)
@ -104,7 +104,7 @@ C-----------------------------------------------------------------------
G2 = (T1+T2)*0.5D0 G2 = (T1+T2)*0.5D0
FR = FC*(CCHR*G1+SMUR*G2) FR = FC*(CCHR*G1+SMUR*G2)
FI = FC*(CCHI*G1+SMUI*G2) FI = FC*(CCHI*G1+SMUI*G2)
CALL ZEXP(FMUR, FMUI, STR, STI) CALL AZEXP(FMUR, FMUI, STR, STI)
PR = 0.5D0*STR/T2 PR = 0.5D0*STR/T2
PI = 0.5D0*STI/T2 PI = 0.5D0*STI/T2
CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI) CALL ZDIV(0.5D0, 0.0D0, STR, STI, PTR, PTI)
@ -151,7 +151,7 @@ C-----------------------------------------------------------------------
YR(1) = S1R YR(1) = S1R
YI(1) = S1I YI(1) = S1I
IF (KODED.EQ.1) RETURN IF (KODED.EQ.1) RETURN
CALL ZEXP(ZR, ZI, STR, STI) CALL AZEXP(ZR, ZI, STR, STI)
CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1)) CALL ZMLT(S1R, S1I, STR, STI, YR(1), YI(1))
RETURN RETURN
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
@ -198,7 +198,7 @@ C-----------------------------------------------------------------------
S1R = S1R*STR S1R = S1R*STR
S1I = S1I*STR S1I = S1I*STR
IF (KODED.EQ.1) GO TO 210 IF (KODED.EQ.1) GO TO 210
CALL ZEXP(ZR, ZI, FR, FI) CALL AZEXP(ZR, ZI, FR, FI)
CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I) CALL ZMLT(S1R, S1I, FR, FI, S1R, S1I)
CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I) CALL ZMLT(S2R, S2I, FR, FI, S2R, S2I)
GO TO 210 GO TO 210
@ -209,7 +209,7 @@ C KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD
C RECURSION C RECURSION
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
110 CONTINUE 110 CONTINUE
CALL ZSQRT(ZR, ZI, STR, STI) CALL AZSQRT(ZR, ZI, STR, STI)
CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI) CALL ZDIV(RTHPI, CZEROI, STR, STI, COEFR, COEFI)
KFLAG = 2 KFLAG = 2
IF (KODED.EQ.2) GO TO 120 IF (KODED.EQ.2) GO TO 120
@ -320,7 +320,7 @@ C-----------------------------------------------------------------------
C COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER C COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER
C SCALING C SCALING
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
TM = ZABS(CSR,CSI) TM = AZABS(CSR,CSI)
PTR = 1.0D0/TM PTR = 1.0D0/TM
S1R = P2R*PTR S1R = P2R*PTR
S1I = P2I*PTR S1I = P2I*PTR
@ -337,7 +337,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING C COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
TM = ZABS(P2R,P2I) TM = AZABS(P2R,P2I)
PTR = 1.0D0/TM PTR = 1.0D0/TM
P1R = P1R*PTR P1R = P1R*PTR
P1I = P1I*PTR P1I = P1I*PTR
@ -472,11 +472,11 @@ C-----------------------------------------------------------------------
S1I = STI S1I = STI
CKR = CKR+RZR CKR = CKR+RZR
CKI = CKI+RZI CKI = CKI+RZI
AS = ZABS(S2R,S2I) AS = AZABS(S2R,S2I)
ALAS = DLOG(AS) ALAS = DLOG(AS)
P2R = -ZDR+ALAS P2R = -ZDR+ALAS
IF(P2R.LT.(-ELIM)) GO TO 263 IF(P2R.LT.(-ELIM)) GO TO 263
CALL ZLOG(S2R,S2I,STR,STI,IDUM) CALL AZLOG(S2R,S2I,STR,STI,IDUM)
P2R = -ZDR+STR P2R = -ZDR+STR
P2I = -ZDI+STI P2I = -ZDI+STI
P2M = DEXP(P2R)/TOL P2M = DEXP(P2R)/TOL

View File

@ -9,12 +9,12 @@ C FNU+N-1 GREATER THAN FNUL BY ADDING NUI AND COMPUTING
C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z) C ACCORDING TO THE UNIFORM ASYMPTOTIC EXPANSION FOR I(FNU,Z)
C ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2 C ON IFORM=1 AND THE EXPANSION FOR J(FNU,Z) ON IFORM=2
C C
C***ROUTINES CALLED ZUNI1,ZUNI2,ZABS,D1MACH C***ROUTINES CALLED ZUNI1,ZUNI2,AZABS,D1MACH
C***END PROLOGUE ZBUNI C***END PROLOGUE ZBUNI
C COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z C COMPLEX CSCL,CSCR,CY,RZ,ST,S1,S2,Y,Z
DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU, DOUBLE PRECISION ALIM, AX, AY, CSCLR, CSCRR, CYI, CYR, DFNU,
* ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R, * ELIM, FNU, FNUI, FNUL, GNU, RAZ, RZI, RZR, STI, STR, S1I, S1R,
* S2I, S2R, TOL, YI, YR, ZI, ZR, ZABS, ASCLE, BRY, C1R, C1I, C1M, * S2I, S2R, TOL, YI, YR, ZI, ZR, AZABS, ASCLE, BRY, C1R, C1I, C1M,
* D1MACH * D1MACH
INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ INTEGER I, IFLAG, IFORM, K, KODE, N, NL, NLAST, NUI, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2), BRY(3) DIMENSION YR(N), YI(N), CYR(2), CYI(2), BRY(3)
@ -46,7 +46,7 @@ C-----------------------------------------------------------------------
20 CONTINUE 20 CONTINUE
IF (NW.LT.0) GO TO 50 IF (NW.LT.0) GO TO 50
IF (NW.NE.0) GO TO 90 IF (NW.NE.0) GO TO 90
STR = ZABS(CYR(1),CYI(1)) STR = AZABS(CYR(1),CYI(1))
C---------------------------------------------------------------------- C----------------------------------------------------------------------
C SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED C SCALE BACKWARD RECURRENCE, BRY(3) IS DEFINED BUT NEVER USED
C---------------------------------------------------------------------- C----------------------------------------------------------------------
@ -72,7 +72,7 @@ C----------------------------------------------------------------------
S1I = CYI(2)*CSCLR S1I = CYI(2)*CSCLR
S2R = CYR(1)*CSCLR S2R = CYR(1)*CSCLR
S2I = CYI(1)*CSCLR S2I = CYI(1)*CSCLR
RAZ = 1.0D0/ZABS(ZR,ZI) RAZ = 1.0D0/AZABS(ZR,ZI)
STR = ZR*RAZ STR = ZR*RAZ
STI = -ZI*RAZ STI = -ZI*RAZ
RZR = (STR+STR)*RAZ RZR = (STR+STR)*RAZ

View File

@ -4,11 +4,11 @@ C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C C
C DOUBLE PRECISION COMPLEX DIVIDE C=A/B. C DOUBLE PRECISION COMPLEX DIVIDE C=A/B.
C C
C***ROUTINES CALLED ZABS C***ROUTINES CALLED AZABS
C***END PROLOGUE ZDIV C***END PROLOGUE ZDIV
DOUBLE PRECISION AR, AI, BR, BI, CR, CI, BM, CA, CB, CC, CD DOUBLE PRECISION AR, AI, BR, BI, CR, CI, BM, CA, CB, CC, CD
DOUBLE PRECISION ZABS DOUBLE PRECISION AZABS
BM = 1.0D0/ZABS(BR,BI) BM = 1.0D0/AZABS(BR,BI)
CC = BR*BM CC = BR*BM
CD = BI*BM CD = BI*BM
CA = (AR*CC+AI*CD)*BM CA = (AR*CC+AI*CD)*BM

View File

@ -1,11 +1,11 @@
SUBROUTINE ZEXP(AR, AI, BR, BI) SUBROUTINE AZEXP(AR, AI, BR, BI)
C***BEGIN PROLOGUE ZEXP C***BEGIN PROLOGUE AZEXP
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C C
C DOUBLE PRECISION COMPLEX EXPONENTIAL FUNCTION B=EXP(A) C DOUBLE PRECISION COMPLEX EXPONENTIAL FUNCTION B=EXP(A)
C C
C***ROUTINES CALLED (NONE) C***ROUTINES CALLED (NONE)
C***END PROLOGUE ZEXP C***END PROLOGUE AZEXP
DOUBLE PRECISION AR, AI, BR, BI, ZM, CA, CB DOUBLE PRECISION AR, AI, BR, BI, ZM, CA, CB
ZM = DEXP(AR) ZM = DEXP(AR)
CA = ZM*DCOS(AI) CA = ZM*DCOS(AI)

View File

@ -6,12 +6,12 @@ C SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE
C ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN C ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN
C RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL. C RETURN WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL.
C C
C***ROUTINES CALLED ZUCHK,ZABS,ZLOG C***ROUTINES CALLED ZUCHK,AZABS,AZLOG
C***END PROLOGUE ZKSCL C***END PROLOGUE ZKSCL
C COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM C COMPLEX CK,CS,CY,CZERO,RZ,S1,S2,Y,ZR,ZD,CELM
DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI, DOUBLE PRECISION ACS, AS, ASCLE, CKI, CKR, CSI, CSR, CYI,
* CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I, * CYR, ELIM, FN, FNU, RZI, RZR, STR, S1I, S1R, S2I,
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, ZABS, * S2R, TOL, YI, YR, ZEROI, ZEROR, ZRI, ZRR, AZABS,
* ZDR, ZDI, CELMR, ELM, HELIM, ALAS * ZDR, ZDI, CELMR, ELM, HELIM, ALAS
INTEGER I, IC, IDUM, KK, N, NN, NW, NZ INTEGER I, IC, IDUM, KK, N, NN, NW, NZ
DIMENSION YR(N), YI(N), CYR(2), CYI(2) DIMENSION YR(N), YI(N), CYR(2), CYI(2)
@ -25,13 +25,13 @@ C
S1I = YI(I) S1I = YI(I)
CYR(I) = S1R CYR(I) = S1R
CYI(I) = S1I CYI(I) = S1I
AS = ZABS(S1R,S1I) AS = AZABS(S1R,S1I)
ACS = -ZRR + DLOG(AS) ACS = -ZRR + DLOG(AS)
NZ = NZ + 1 NZ = NZ + 1
YR(I) = ZEROR YR(I) = ZEROR
YI(I) = ZEROI YI(I) = ZEROI
IF (ACS.LT.(-ELIM)) GO TO 10 IF (ACS.LT.(-ELIM)) GO TO 10
CALL ZLOG(S1R, S1I, CSR, CSI, IDUM) CALL AZLOG(S1R, S1I, CSR, CSI, IDUM)
CSR = CSR - ZRR CSR = CSR - ZRR
CSI = CSI - ZRI CSI = CSI - ZRI
STR = DEXP(CSR)/TOL STR = DEXP(CSR)/TOL
@ -78,14 +78,14 @@ C
S1I = CSI S1I = CSI
CKR = CKR + RZR CKR = CKR + RZR
CKI = CKI + RZI CKI = CKI + RZI
AS = ZABS(S2R,S2I) AS = AZABS(S2R,S2I)
ALAS = DLOG(AS) ALAS = DLOG(AS)
ACS = -ZDR + ALAS ACS = -ZDR + ALAS
NZ = NZ + 1 NZ = NZ + 1
YR(I) = ZEROR YR(I) = ZEROR
YI(I) = ZEROI YI(I) = ZEROI
IF (ACS.LT.(-ELIM)) GO TO 25 IF (ACS.LT.(-ELIM)) GO TO 25
CALL ZLOG(S2R, S2I, CSR, CSI, IDUM) CALL AZLOG(S2R, S2I, CSR, CSI, IDUM)
CSR = CSR - ZDR CSR = CSR - ZDR
CSI = CSI - ZDI CSI = CSI - ZDI
STR = DEXP(CSR)/TOL STR = DEXP(CSR)/TOL

View File

@ -1,13 +1,13 @@
SUBROUTINE ZLOG(AR, AI, BR, BI, IERR) SUBROUTINE AZLOG(AR, AI, BR, BI, IERR)
C***BEGIN PROLOGUE ZLOG C***BEGIN PROLOGUE AZLOG
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C C
C DOUBLE PRECISION COMPLEX LOGARITHM B=CLOG(A) C DOUBLE PRECISION COMPLEX LOGARITHM B=CLOG(A)
C IERR=0,NORMAL RETURN IERR=1, Z=CMPLX(0.0,0.0) C IERR=0,NORMAL RETURN IERR=1, Z=CMPLX(0.0,0.0)
C***ROUTINES CALLED ZABS C***ROUTINES CALLED AZABS
C***END PROLOGUE ZLOG C***END PROLOGUE AZLOG
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DHPI DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DHPI
DOUBLE PRECISION ZABS DOUBLE PRECISION AZABS
DATA DPI , DHPI / 3.141592653589793238462643383D+0, DATA DPI , DHPI / 3.141592653589793238462643383D+0,
1 1.570796326794896619231321696D+0/ 1 1.570796326794896619231321696D+0/
C C
@ -31,7 +31,7 @@ C
BI = 0.0D+0 BI = 0.0D+0
RETURN RETURN
40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI 40 IF (AR.LT.0.0D+0) DTHETA = DTHETA + DPI
50 ZM = ZABS(AR,AI) 50 ZM = AZABS(AR,AI)
BR = DLOG(ZM) BR = DLOG(ZM)
BI = DTHETA BI = DTHETA
RETURN RETURN

View File

@ -5,20 +5,20 @@ C
C ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE C ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY THE
C MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES. C MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES.
C C
C***ROUTINES CALLED DGAMLN,D1MACH,ZABS,ZEXP,ZLOG,ZMLT C***ROUTINES CALLED DGAMLN,D1MACH,AZABS,AZEXP,AZLOG,ZMLT
C***END PROLOGUE ZMLRI C***END PROLOGUE ZMLRI
C COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z C COMPLEX CK,CNORM,CONE,CTWO,CZERO,PT,P1,P2,RZ,SUM,Y,Z
DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI, DOUBLE PRECISION ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI,
* CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I, * CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, FNU, PTI, PTR, P1I,
* P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI, * P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI,
* SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR, DGAMLN, * SUMR, TFNF, TOL, TST, YI, YR, ZEROI, ZEROR, ZI, ZR, DGAMLN,
* D1MACH, ZABS * D1MACH, AZABS
INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ INTEGER I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, KODE, M, N, NZ
DIMENSION YR(N), YI(N) DIMENSION YR(N), YI(N)
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
SCLE = D1MACH(1)/TOL SCLE = D1MACH(1)/TOL
NZ=0 NZ=0
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
IAZ = INT(SNGL(AZ)) IAZ = INT(SNGL(AZ))
IFNU = INT(SNGL(FNU)) IFNU = INT(SNGL(FNU))
INU = IFNU + N - 1 INU = IFNU + N - 1
@ -52,7 +52,7 @@ C-----------------------------------------------------------------------
P1I = PTI P1I = PTI
CKR = CKR + RZR CKR = CKR + RZR
CKI = CKI + RZI CKI = CKI + RZI
AP = ZABS(P2R,P2I) AP = AZABS(P2R,P2I)
IF (AP.GT.TST*AK*AK) GO TO 20 IF (AP.GT.TST*AK*AK) GO TO 20
AK = AK + 1.0D0 AK = AK + 1.0D0
10 CONTINUE 10 CONTINUE
@ -85,12 +85,12 @@ C-----------------------------------------------------------------------
P1I = PTI P1I = PTI
CKR = CKR + RZR CKR = CKR + RZR
CKI = CKI + RZI CKI = CKI + RZI
AP = ZABS(P2R,P2I) AP = AZABS(P2R,P2I)
IF (AP.LT.TST) GO TO 30 IF (AP.LT.TST) GO TO 30
IF (ITIME.EQ.2) GO TO 40 IF (ITIME.EQ.2) GO TO 40
ACK = ZABS(CKR,CKI) ACK = AZABS(CKR,CKI)
FLAM = ACK + DSQRT(ACK*ACK-1.0D0) FLAM = ACK + DSQRT(ACK*ACK-1.0D0)
FKAP = AP/ZABS(P1R,P1I) FKAP = AP/AZABS(P1R,P1I)
RHO = DMIN1(FLAM,FKAP) RHO = DMIN1(FLAM,FKAP)
TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0)) TST = TST*DSQRT(RHO/(RHO*RHO-1.0D0))
ITIME = 2 ITIME = 2
@ -172,7 +172,7 @@ C-----------------------------------------------------------------------
PTR = ZR PTR = ZR
PTI = ZI PTI = ZI
IF (KODE.EQ.2) PTR = ZEROR IF (KODE.EQ.2) PTR = ZEROR
CALL ZLOG(RZR, RZI, STR, STI, IDUM) CALL AZLOG(RZR, RZI, STR, STI, IDUM)
P1R = -FNF*STR + PTR P1R = -FNF*STR + PTR
P1I = -FNF*STI + PTI P1I = -FNF*STI + PTI
AP = DGAMLN(1.0D0+FNF,IDUM) AP = DGAMLN(1.0D0+FNF,IDUM)
@ -184,9 +184,9 @@ C IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
P2R = P2R + SUMR P2R = P2R + SUMR
P2I = P2I + SUMI P2I = P2I + SUMI
AP = ZABS(P2R,P2I) AP = AZABS(P2R,P2I)
P1R = 1.0D0/AP P1R = 1.0D0/AP
CALL ZEXP(PTR, PTI, STR, STI) CALL AZEXP(PTR, PTI, STR, STI)
CKR = STR*P1R CKR = STR*P1R
CKI = STI*P1R CKI = STI*P1R
PTR = P2R*P1R PTR = P2R*P1R

View File

@ -9,18 +9,18 @@ C MATHEMATICAL SCIENCES, VOL 77B, P111-114, SEPTEMBER, 1973,
C BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER, C BESSEL FUNCTIONS I AND J OF COMPLEX ARGUMENT AND INTEGER ORDER,
C BY D. J. SOOKNE. C BY D. J. SOOKNE.
C C
C***ROUTINES CALLED ZABS,ZDIV C***ROUTINES CALLED AZABS,ZDIV
C***END PROLOGUE ZRATI C***END PROLOGUE ZRATI
C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU
DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR, DOUBLE PRECISION AK, AMAGZ, AP1, AP2, ARG, AZ, CDFNUI, CDFNUR,
* CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU, * CONEI, CONER, CYI, CYR, CZEROI, CZEROR, DFNU, FDNU, FLAM, FNU,
* FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI, * FNUP, PTI, PTR, P1I, P1R, P2I, P2R, RAK, RAP1, RHO, RT2, RZI,
* RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR, ZABS * RZR, TEST, TEST1, TOL, TTI, TTR, T1I, T1R, ZI, ZR, AZABS
INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N INTEGER I, ID, IDNU, INU, ITIME, K, KK, MAGZ, N
DIMENSION CYR(N), CYI(N) DIMENSION CYR(N), CYI(N)
DATA CZEROR,CZEROI,CONER,CONEI,RT2/ DATA CZEROR,CZEROI,CONER,CONEI,RT2/
1 0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0 / 1 0.0D0, 0.0D0, 1.0D0, 0.0D0, 1.41421356237309505D0 /
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
INU = INT(SNGL(FNU)) INU = INT(SNGL(FNU))
IDNU = INU + N - 1 IDNU = INU + N - 1
MAGZ = INT(SNGL(AZ)) MAGZ = INT(SNGL(AZ))
@ -42,8 +42,8 @@ C COMPLEX Z,CY(1),CONE,CZERO,P1,P2,T1,RZ,PT,CDFNU
T1R = T1R + RZR T1R = T1R + RZR
T1I = T1I + RZI T1I = T1I + RZI
IF (ID.GT.0) ID = 0 IF (ID.GT.0) ID = 0
AP2 = ZABS(P2R,P2I) AP2 = AZABS(P2R,P2I)
AP1 = ZABS(P1R,P1I) AP1 = AZABS(P1R,P1I)
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU C THE OVERFLOW TEST ON K(FNU+I-1,Z) BEFORE THE CALL TO CBKNU
C GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT C GUARANTEES THAT P2 IS ON SCALE. SCALE TEST1 AND ALL SUBSEQUENT
@ -70,10 +70,10 @@ C-----------------------------------------------------------------------
P1I = PTI P1I = PTI
T1R = T1R + RZR T1R = T1R + RZR
T1I = T1I + RZI T1I = T1I + RZI
AP2 = ZABS(P2R,P2I) AP2 = AZABS(P2R,P2I)
IF (AP1.LE.TEST) GO TO 10 IF (AP1.LE.TEST) GO TO 10
IF (ITIME.EQ.2) GO TO 20 IF (ITIME.EQ.2) GO TO 20
AK = ZABS(T1R,T1I)*0.5D0 AK = AZABS(T1R,T1I)*0.5D0
FLAM = AK + DSQRT(AK*AK-1.0D0) FLAM = AK + DSQRT(AK*AK-1.0D0)
RHO = DMIN1(AP2/AP1,FLAM) RHO = DMIN1(AP2/AP1,FLAM)
TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0)) TEST = TEST1*DSQRT(RHO/(RHO*RHO-1.0D0))
@ -116,7 +116,7 @@ C-----------------------------------------------------------------------
DO 60 I=2,N DO 60 I=2,N
PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1) PTR = CDFNUR + (T1R*RZR-T1I*RZI) + CYR(K+1)
PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1) PTI = CDFNUI + (T1R*RZI+T1I*RZR) + CYI(K+1)
AK = ZABS(PTR,PTI) AK = AZABS(PTR,PTI)
IF (AK.NE.CZEROR) GO TO 50 IF (AK.NE.CZEROR) GO TO 50
PTR = TOL PTR = TOL
PTI = TOL PTI = TOL

View File

@ -11,16 +11,16 @@ C MAGNITUDE, BUT FOR KODE=2 THEY CAN BE OF THE SAME ORDER
C OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE C OF MAGNITUDE AND THE MAXIMUM MUST BE AT LEAST ONE
C PRECISION ABOVE THE UNDERFLOW LIMIT. C PRECISION ABOVE THE UNDERFLOW LIMIT.
C C
C***ROUTINES CALLED ZABS,ZEXP,ZLOG C***ROUTINES CALLED AZABS,AZEXP,AZLOG
C***END PROLOGUE ZS1S2 C***END PROLOGUE ZS1S2
C COMPLEX CZERO,C1,S1,S1D,S2,ZR C COMPLEX CZERO,C1,S1,S1D,S2,ZR
DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI, DOUBLE PRECISION AA, ALIM, ALN, ASCLE, AS1, AS2, C1I, C1R, S1DI,
* S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR, ZABS * S1DR, S1I, S1R, S2I, S2R, ZEROI, ZEROR, ZRI, ZRR, AZABS
INTEGER IUF, IDUM, NZ INTEGER IUF, IDUM, NZ
DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 / DATA ZEROR,ZEROI / 0.0D0 , 0.0D0 /
NZ = 0 NZ = 0
AS1 = ZABS(S1R,S1I) AS1 = AZABS(S1R,S1I)
AS2 = ZABS(S2R,S2I) AS2 = AZABS(S2R,S2I)
IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10 IF (S1R.EQ.0.0D0 .AND. S1I.EQ.0.0D0) GO TO 10
IF (AS1.EQ.0.0D0) GO TO 10 IF (AS1.EQ.0.0D0) GO TO 10
ALN = -ZRR - ZRR + DLOG(AS1) ALN = -ZRR - ZRR + DLOG(AS1)
@ -30,11 +30,11 @@ C COMPLEX CZERO,C1,S1,S1D,S2,ZR
S1I = ZEROI S1I = ZEROI
AS1 = ZEROR AS1 = ZEROR
IF (ALN.LT.(-ALIM)) GO TO 10 IF (ALN.LT.(-ALIM)) GO TO 10
CALL ZLOG(S1DR, S1DI, C1R, C1I, IDUM) CALL AZLOG(S1DR, S1DI, C1R, C1I, IDUM)
C1R = C1R - ZRR - ZRR C1R = C1R - ZRR - ZRR
C1I = C1I - ZRI - ZRI C1I = C1I - ZRI - ZRI
CALL ZEXP(C1R, C1I, S1R, S1I) CALL AZEXP(C1R, C1I, S1R, S1I)
AS1 = ZABS(S1R,S1I) AS1 = AZABS(S1R,S1I)
IUF = IUF + 1 IUF = IUF + 1
10 CONTINUE 10 CONTINUE
AA = DMAX1(AS1,AS2) AA = DMAX1(AS1,AS2)

View File

@ -11,20 +11,20 @@ C DUE TO UNDERFLOW. NZ.LT.0 MEANS UNDERFLOW OCCURRED, BUT THE
C CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE C CONDITION CABS(Z).LE.2*SQRT(FNU+1) WAS VIOLATED AND THE
C COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ). C COMPUTATION MUST BE COMPLETED IN ANOTHER ROUTINE WITH N=N-ABS(NZ).
C C
C***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,ZABS,ZDIV,ZLOG,ZMLT C***ROUTINES CALLED DGAMLN,D1MACH,ZUCHK,AZABS,ZDIV,AZLOG,ZMLT
C***END PROLOGUE ZSERI C***END PROLOGUE ZSERI
C COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z C COMPLEX AK1,CK,COEF,CONE,CRSC,CSCL,CZ,CZERO,HZ,RZ,S1,S2,Y,Z
DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL, DOUBLE PRECISION AA, ACZ, AK, AK1I, AK1R, ALIM, ARM, ASCLE, ATOL,
* AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU, * AZ, CKI, CKR, COEFI, COEFR, CONEI, CONER, CRSCR, CZI, CZR, DFNU,
* ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI, * ELIM, FNU, FNUP, HZI, HZR, RAZ, RS, RTR1, RZI, RZR, S, SS, STI,
* STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI, * STR, S1I, S1R, S2I, S2R, TOL, YI, YR, WI, WR, ZEROI, ZEROR, ZI,
* ZR, DGAMLN, D1MACH, ZABS * ZR, DGAMLN, D1MACH, AZABS
INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW INTEGER I, IB, IDUM, IFLAG, IL, K, KODE, L, M, N, NN, NZ, NW
DIMENSION YR(N), YI(N), WR(2), WI(2) DIMENSION YR(N), YI(N), WR(2), WI(2)
DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 / DATA ZEROR,ZEROI,CONER,CONEI / 0.0D0, 0.0D0, 1.0D0, 0.0D0 /
C C
NZ = 0 NZ = 0
AZ = ZABS(ZR,ZI) AZ = AZABS(ZR,ZI)
IF (AZ.EQ.0.0D0) GO TO 160 IF (AZ.EQ.0.0D0) GO TO 160
ARM = 1.0D+3*D1MACH(1) ARM = 1.0D+3*D1MACH(1)
RTR1 = DSQRT(ARM) RTR1 = DSQRT(ARM)
@ -38,9 +38,9 @@ C
IF (AZ.LE.RTR1) GO TO 10 IF (AZ.LE.RTR1) GO TO 10
CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI) CALL ZMLT(HZR, HZI, HZR, HZI, CZR, CZI)
10 CONTINUE 10 CONTINUE
ACZ = ZABS(CZR,CZI) ACZ = AZABS(CZR,CZI)
NN = N NN = N
CALL ZLOG(HZR, HZI, CKR, CKI, IDUM) CALL AZLOG(HZR, HZI, CKR, CKI, IDUM)
20 CONTINUE 20 CONTINUE
DFNU = FNU + DBLE(FLOAT(NN-1)) DFNU = FNU + DBLE(FLOAT(NN-1))
FNUP = DFNU + 1.0D0 FNUP = DFNU + 1.0D0
@ -157,7 +157,7 @@ C-----------------------------------------------------------------------
YI(K) = CKI YI(K) = CKI
AK = AK - 1.0D0 AK = AK - 1.0D0
K = K - 1 K = K - 1
IF (ZABS(CKR,CKI).GT.ASCLE) GO TO 140 IF (AZABS(CKR,CKI).GT.ASCLE) GO TO 140
130 CONTINUE 130 CONTINUE
RETURN RETURN
140 CONTINUE 140 CONTINUE

View File

@ -1,16 +1,16 @@
SUBROUTINE ZSQRT(AR, AI, BR, BI) SUBROUTINE AZSQRT(AR, AI, BR, BI)
C***BEGIN PROLOGUE ZSQRT C***BEGIN PROLOGUE AZSQRT
C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY C***REFER TO ZBESH,ZBESI,ZBESJ,ZBESK,ZBESY,ZAIRY,ZBIRY
C C
C DOUBLE PRECISION COMPLEX SQUARE ROOT, B=CSQRT(A) C DOUBLE PRECISION COMPLEX SQUARE ROOT, B=CSQRT(A)
C C
C***ROUTINES CALLED ZABS C***ROUTINES CALLED AZABS
C***END PROLOGUE ZSQRT C***END PROLOGUE AZSQRT
DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DRT DOUBLE PRECISION AR, AI, BR, BI, ZM, DTHETA, DPI, DRT
DOUBLE PRECISION ZABS DOUBLE PRECISION AZABS
DATA DRT , DPI / 7.071067811865475244008443621D-1, DATA DRT , DPI / 7.071067811865475244008443621D-1,
1 3.141592653589793238462643383D+0/ 1 3.141592653589793238462643383D+0/
ZM = ZABS(AR,AI) ZM = AZABS(AR,AI)
ZM = DSQRT(ZM) ZM = DSQRT(ZM)
IF (AR.EQ.0.0D+0) GO TO 10 IF (AR.EQ.0.0D+0) GO TO 10
IF (AI.EQ.0.0D+0) GO TO 20 IF (AI.EQ.0.0D+0) GO TO 20

View File

@ -29,7 +29,7 @@ C MCONJ=SIGN OF AIMAG(Z), BUT IS AMBIGUOUS WHEN Z IS REAL AND
C MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR= C MUST BE SPECIFIED. IPMTR=0 RETURNS ALL PARAMETERS. IPMTR=
C 1 COMPUTES ALL EXCEPT ASUM AND BSUM. C 1 COMPUTES ALL EXCEPT ASUM AND BSUM.
C C
C***ROUTINES CALLED ZABS,ZDIV,ZLOG,ZSQRT,D1MACH C***ROUTINES CALLED AZABS,ZDIV,AZLOG,AZSQRT,D1MACH
C***END PROLOGUE ZUNHJ C***END PROLOGUE ZUNHJ
C COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN, C COMPLEX ARG,ASUM,BSUM,CFNU,CONE,CR,CZERO,DR,P,PHI,PRZTH,PTFN,
C *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1, C *RFN13,RTZTA,RZTH,SUMA,SUMB,TFN,T2,UP,W,W2,Z,ZA,ZB,ZC,ZETA,ZETA1,
@ -42,7 +42,7 @@ C *ZETA2,ZTH
* SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI, * SUMAI, SUMAR, SUMBI, SUMBR, TEST, TFNI, TFNR, THPI, TOL, TZAI,
* TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR, * TZAR, T2I, T2R, UPI, UPR, WI, WR, W2I, W2R, ZAI, ZAR, ZBI, ZBR,
* ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I, * ZCI, ZCR, ZEROI, ZEROR, ZETAI, ZETAR, ZETA1I, ZETA1R, ZETA2I,
* ZETA2R, ZI, ZR, ZTHI, ZTHR, ZABS, AC, D1MACH * ZETA2R, ZI, ZR, ZTHI, ZTHR, AZABS, AC, D1MACH
INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR, INTEGER IAS, IBS, IPMTR, IS, J, JR, JU, K, KMAX, KP1, KS, L, LR,
* LRP1, L1, L2, M, IDUM * LRP1, L1, L2, M, IDUM
DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30), DIMENSION AR(14), BR(14), C(105), ALFA(180), BETA(210), GAMA(30),
@ -457,7 +457,7 @@ C-----------------------------------------------------------------------
RFN13 = 1.0D0/FN13 RFN13 = 1.0D0/FN13
W2R = CONER - ZBR*ZBR + ZBI*ZBI W2R = CONER - ZBR*ZBR + ZBI*ZBI
W2I = CONEI - ZBR*ZBI - ZBR*ZBI W2I = CONEI - ZBR*ZBI - ZBR*ZBI
AW2 = ZABS(W2R,W2I) AW2 = AZABS(W2R,W2I)
IF (AW2.GT.0.25D0) GO TO 130 IF (AW2.GT.0.25D0) GO TO 130
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(W2).LE.0.25D0 C POWER SERIES FOR CABS(W2).LE.0.25D0
@ -484,8 +484,8 @@ C-----------------------------------------------------------------------
ZETAI = W2R*SUMAI + W2I*SUMAR ZETAI = W2R*SUMAI + W2I*SUMAR
ARGR = ZETAR*FN23 ARGR = ZETAR*FN23
ARGI = ZETAI*FN23 ARGI = ZETAI*FN23
CALL ZSQRT(SUMAR, SUMAI, ZAR, ZAI) CALL AZSQRT(SUMAR, SUMAI, ZAR, ZAI)
CALL ZSQRT(W2R, W2I, STR, STI) CALL AZSQRT(W2R, W2I, STR, STI)
ZETA2R = STR*FNU ZETA2R = STR*FNU
ZETA2I = STI*FNU ZETA2I = STI*FNU
STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI) STR = CONER + EX2*(ZETAR*ZAR-ZETAI*ZAI)
@ -494,7 +494,7 @@ C-----------------------------------------------------------------------
ZETA1I = STR*ZETA2I + STI*ZETA2R ZETA1I = STR*ZETA2I + STI*ZETA2R
ZAR = ZAR + ZAR ZAR = ZAR + ZAR
ZAI = ZAI + ZAI ZAI = ZAI + ZAI
CALL ZSQRT(ZAR, ZAI, STR, STI) CALL AZSQRT(ZAR, ZAI, STR, STI)
PHIR = STR*RFN13 PHIR = STR*RFN13
PHII = STI*RFN13 PHII = STI*RFN13
IF (IPMTR.EQ.1) GO TO 120 IF (IPMTR.EQ.1) GO TO 120
@ -565,13 +565,13 @@ C-----------------------------------------------------------------------
C CABS(W2).GT.0.25D0 C CABS(W2).GT.0.25D0
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
130 CONTINUE 130 CONTINUE
CALL ZSQRT(W2R, W2I, WR, WI) CALL AZSQRT(W2R, W2I, WR, WI)
IF (WR.LT.0.0D0) WR = 0.0D0 IF (WR.LT.0.0D0) WR = 0.0D0
IF (WI.LT.0.0D0) WI = 0.0D0 IF (WI.LT.0.0D0) WI = 0.0D0
STR = CONER + WR STR = CONER + WR
STI = WI STI = WI
CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI) CALL ZDIV(STR, STI, ZBR, ZBI, ZAR, ZAI)
CALL ZLOG(ZAR, ZAI, ZCR, ZCI, IDUM) CALL AZLOG(ZAR, ZAI, ZCR, ZCI, IDUM)
IF (ZCI.LT.0.0D0) ZCI = 0.0D0 IF (ZCI.LT.0.0D0) ZCI = 0.0D0
IF (ZCI.GT.HPI) ZCI = HPI IF (ZCI.GT.HPI) ZCI = HPI
IF (ZCR.LT.0.0D0) ZCR = 0.0D0 IF (ZCR.LT.0.0D0) ZCR = 0.0D0
@ -581,7 +581,7 @@ C-----------------------------------------------------------------------
ZETA1I = ZCI*FNU ZETA1I = ZCI*FNU
ZETA2R = WR*FNU ZETA2R = WR*FNU
ZETA2I = WI*FNU ZETA2I = WI*FNU
AZTH = ZABS(ZTHR,ZTHI) AZTH = AZABS(ZTHR,ZTHI)
ANG = THPI ANG = THPI
IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140 IF (ZTHR.GE.0.0D0 .AND. ZTHI.LT.0.0D0) GO TO 140
ANG = HPI ANG = HPI
@ -600,7 +600,7 @@ C-----------------------------------------------------------------------
CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI) CALL ZDIV(RTZTR, RTZTI, WR, WI, ZAR, ZAI)
TZAR = ZAR + ZAR TZAR = ZAR + ZAR
TZAI = ZAI + ZAI TZAI = ZAI + ZAI
CALL ZSQRT(TZAR, TZAI, STR, STI) CALL AZSQRT(TZAR, TZAI, STR, STI)
PHIR = STR*RFN13 PHIR = STR*RFN13
PHII = STI*RFN13 PHII = STI*RFN13
IF (IPMTR.EQ.1) GO TO 120 IF (IPMTR.EQ.1) GO TO 120

View File

@ -12,7 +12,7 @@ C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
C Y(I)=CZERO FOR I=NLAST+1,N C Y(I)=CZERO FOR I=NLAST+1,N
C C
C***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,ZABS C***ROUTINES CALLED ZUCHK,ZUNIK,ZUOIK,D1MACH,AZABS
C***END PROLOGUE ZUNI1 C***END PROLOGUE ZUNI1
C COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1, C COMPLEX CFN,CONE,CRSC,CSCL,CSR,CSS,CWRK,CZERO,C1,C2,PHI,RZ,SUM,S1,
C *S2,Y,Z,ZETA1,ZETA2 C *S2,Y,Z,ZETA1,ZETA2
@ -20,7 +20,7 @@ C *S2,Y,Z,ZETA1,ZETA2
* CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN, * CSCL, CSRR, CSSR, CWRKI, CWRKR, C1R, C2I, C2M, C2R, ELIM, FN,
* FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI, * FNU, FNUL, PHII, PHIR, RAST, RS1, RZI, RZR, STI, STR, SUMI,
* SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, * SUMR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I,
* ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI, D1MACH, ZABS * ZETA1R, ZETA2I, ZETA2R, ZI, ZR, CYR, CYI, D1MACH, AZABS
INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ INTEGER I, IFLAG, INIT, K, KODE, M, N, ND, NLAST, NN, NUF, NW, NZ
DIMENSION BRY(3), YR(N), YI(N), CWRKR(16), CWRKI(16), CSSR(3), DIMENSION BRY(3), YR(N), YI(N), CWRKR(16), CWRKI(16), CSSR(3),
* CSRR(3), CYR(2), CYI(2) * CSRR(3), CYR(2), CYI(2)
@ -53,7 +53,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 10 IF (KODE.EQ.1) GO TO 10
STR = ZR + ZETA2R STR = ZR + ZETA2R
STI = ZI + ZETA2I STI = ZI + ZETA2I
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZETA1R + STR S1R = -ZETA1R + STR
@ -75,7 +75,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 40 IF (KODE.EQ.1) GO TO 40
STR = ZR + ZETA2R STR = ZR + ZETA2R
STI = ZI + ZETA2I STI = ZI + ZETA2I
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZETA1R + STR S1R = -ZETA1R + STR
@ -95,7 +95,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIR,PHII) APHI = AZABS(PHIR,PHII)
RS1 = RS1 + DLOG(APHI) RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 110 IF (DABS(RS1).GT.ELIM) GO TO 110
IF (I.EQ.1) IFLAG = 1 IF (I.EQ.1) IFLAG = 1
@ -124,7 +124,7 @@ C-----------------------------------------------------------------------
YI(M) = S2I*CSRR(IFLAG) YI(M) = S2I*CSRR(IFLAG)
80 CONTINUE 80 CONTINUE
IF (ND.LE.2) GO TO 100 IF (ND.LE.2) GO TO 100
RAST = 1.0D0/ZABS(ZR,ZI) RAST = 1.0D0/AZABS(ZR,ZI)
STR = ZR*RAST STR = ZR*RAST
STI = -ZI*RAST STI = -ZI*RAST
RZR = (STR+STR)*RAST RZR = (STR+STR)*RAST

View File

@ -13,7 +13,7 @@ C NLAST.NE.0 IS THE NUMBER LEFT TO BE COMPUTED BY ANOTHER
C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL. C FORMULA FOR ORDERS FNU TO FNU+NLAST-1 BECAUSE FNU+NLAST-1.LT.FNUL.
C Y(I)=CZERO FOR I=NLAST+1,N C Y(I)=CZERO FOR I=NLAST+1,N
C C
C***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,ZABS C***ROUTINES CALLED ZAIRY,ZUCHK,ZUNHJ,ZUOIK,D1MACH,AZABS
C***END PROLOGUE ZUNI2 C***END PROLOGUE ZUNI2
C COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS, C COMPLEX AI,ARG,ASUM,BSUM,CFN,CI,CID,CIP,CONE,CRSC,CSCL,CSR,CSS,
C *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN C *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN
@ -23,7 +23,7 @@ C *CZERO,C1,C2,DAI,PHI,RZ,S1,S2,Y,Z,ZB,ZETA1,ZETA2,ZN
* DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI, * DAIR, ELIM, FN, FNU, FNUL, HPI, PHII, PHIR, RAST, RAZ, RS1, RZI,
* RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI, * RZR, STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, ZBI, ZBR, ZEROI,
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR, * ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, ZNI, ZNR, ZR, CYR,
* CYI, D1MACH, ZABS, CAR, SAR * CYI, D1MACH, AZABS, CAR, SAR
INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST, INTEGER I, IFLAG, IN, INU, J, K, KODE, N, NAI, ND, NDAI, NLAST,
* NN, NUF, NW, NZ, IDUM * NN, NUF, NW, NZ, IDUM
DIMENSION BRY(3), YR(N), YI(N), CIPR(4), CIPI(4), CSSR(3), DIMENSION BRY(3), YR(N), YI(N), CIPR(4), CIPI(4), CSSR(3),
@ -85,7 +85,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 20 IF (KODE.EQ.1) GO TO 20
STR = ZBR + ZETA2R STR = ZBR + ZETA2R
STI = ZBI + ZETA2I STI = ZBI + ZETA2I
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZETA1R + STR S1R = -ZETA1R + STR
@ -106,7 +106,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 50 IF (KODE.EQ.1) GO TO 50
STR = ZBR + ZETA2R STR = ZBR + ZETA2R
STI = ZBI + ZETA2I STI = ZBI + ZETA2I
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZETA1R + STR S1R = -ZETA1R + STR
@ -127,8 +127,8 @@ C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIR,PHII) APHI = AZABS(PHIR,PHII)
AARG = ZABS(ARGR,ARGI) AARG = AZABS(ARGR,ARGI)
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 120 IF (DABS(RS1).GT.ELIM) GO TO 120
IF (I.EQ.1) IFLAG = 1 IF (I.EQ.1) IFLAG = 1
@ -171,7 +171,7 @@ C-----------------------------------------------------------------------
C2R = STR C2R = STR
90 CONTINUE 90 CONTINUE
IF (ND.LE.2) GO TO 110 IF (ND.LE.2) GO TO 110
RAZ = 1.0D0/ZABS(ZR,ZI) RAZ = 1.0D0/AZABS(ZR,ZI)
STR = ZR*RAZ STR = ZR*RAZ
STI = -ZI*RAZ STI = -ZI*RAZ
RZR = (STR+STR)*RAZ RZR = (STR+STR)*RAZ

View File

@ -18,7 +18,7 @@ C 1 OR 2 WITH NO CHANGE IN INIT. CWRK IS A COMPLEX WORK
C ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI, C ARRAY. IPMTR=0 COMPUTES ALL PARAMETERS. IPMTR=1 COMPUTES PHI,
C ZETA1,ZETA2. C ZETA1,ZETA2.
C C
C***ROUTINES CALLED ZDIV,ZLOG,ZSQRT,D1MACH C***ROUTINES CALLED ZDIV,AZLOG,AZSQRT,D1MACH
C***END PROLOGUE ZUNIK C***END PROLOGUE ZUNIK
C COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1, C COMPLEX CFN,CON,CONE,CRFN,CWRK,CZERO,PHI,S,SR,SUM,T,T2,ZETA1,
C *ZETA2,ZN,ZR C *ZETA2,ZN,ZR
@ -131,11 +131,11 @@ C-----------------------------------------------------------------------
TI = ZRI*RFN TI = ZRI*RFN
SR = CONER + (TR*TR-TI*TI) SR = CONER + (TR*TR-TI*TI)
SI = CONEI + (TR*TI+TI*TR) SI = CONEI + (TR*TI+TI*TR)
CALL ZSQRT(SR, SI, SRR, SRI) CALL AZSQRT(SR, SI, SRR, SRI)
STR = CONER + SRR STR = CONER + SRR
STI = CONEI + SRI STI = CONEI + SRI
CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI) CALL ZDIV(STR, STI, TR, TI, ZNR, ZNI)
CALL ZLOG(ZNR, ZNI, STR, STI, IDUM) CALL AZLOG(ZNR, ZNI, STR, STI, IDUM)
ZETA1R = FNU*STR ZETA1R = FNU*STR
ZETA1I = FNU*STI ZETA1I = FNU*STI
ZETA2R = FNU*SRR ZETA2R = FNU*SRR
@ -143,7 +143,7 @@ C-----------------------------------------------------------------------
CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI) CALL ZDIV(CONER, CONEI, SRR, SRI, TR, TI)
SRR = TR*RFN SRR = TR*RFN
SRI = TI*RFN SRI = TI*RFN
CALL ZSQRT(SRR, SRI, CWRKR(16), CWRKI(16)) CALL AZSQRT(SRR, SRI, CWRKR(16), CWRKI(16))
PHIR = CWRKR(16)*CON(IKFLG) PHIR = CWRKR(16)*CON(IKFLG)
PHII = CWRKI(16)*CON(IKFLG) PHII = CWRKI(16)*CON(IKFLG)
IF (IPMTR.NE.0) RETURN IF (IPMTR.NE.0) RETURN

View File

@ -9,7 +9,7 @@ C UNIFORM ASYMPTOTIC EXPANSION.
C MR INDICATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. C MR INDICATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
C C
C***ROUTINES CALLED ZKSCL,ZS1S2,ZUCHK,ZUNIK,D1MACH,ZABS C***ROUTINES CALLED ZKSCL,ZS1S2,ZUCHK,ZUNIK,D1MACH,AZABS
C***END PROLOGUE ZUNK1 C***END PROLOGUE ZUNK1
C COMPLEX CFN,CK,CONE,CRSC,CS,CSCL,CSGN,CSPN,CSR,CSS,CWRK,CY,CZERO, C COMPLEX CFN,CK,CONE,CRSC,CS,CSCL,CSGN,CSPN,CSR,CSS,CWRK,CY,CZERO,
C *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR C *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR
@ -19,7 +19,7 @@ C *C1,C2,PHI,PHID,RZ,SUM,SUMD,S1,S2,Y,Z,ZETA1,ZETA1D,ZETA2,ZETA2D,ZR
* FNF, FNU, PHIDI, PHIDR, PHII, PHIR, PI, RAST, RAZR, RS1, RZI, * FNF, FNU, PHIDI, PHIDR, PHII, PHIR, PI, RAST, RAZR, RS1, RZI,
* RZR, SGN, STI, STR, SUMDI, SUMDR, SUMI, SUMR, S1I, S1R, S2I, * RZR, SGN, STI, STR, SUMDI, SUMDR, SUMI, SUMR, S1I, S1R, S2I,
* S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, * S2R, TOL, YI, YR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R,
* ZET1DI, ZET1DR, ZET2DI, ZET2DR, ZI, ZR, ZRI, ZRR, D1MACH, ZABS * ZET1DI, ZET1DR, ZET2DI, ZET2DR, ZI, ZR, ZRI, ZRR, D1MACH, AZABS
INTEGER I, IB, IFLAG, IFN, IL, INIT, INU, IUF, K, KDFLG, KFLAG, INTEGER I, IB, IFLAG, IFN, IL, INIT, INU, IUF, K, KDFLG, KFLAG,
* KK, KODE, MR, N, NW, NZ, INITD, IC, IPARD, J * KK, KODE, MR, N, NW, NZ, INITD, IC, IPARD, J
DIMENSION BRY(3), INIT(2), YR(N), YI(N), SUMR(2), SUMI(2), DIMENSION BRY(3), INIT(2), YR(N), YI(N), SUMR(2), SUMI(2),
@ -65,7 +65,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 20 IF (KODE.EQ.1) GO TO 20
STR = ZRR + ZETA2R(J) STR = ZRR + ZETA2R(J)
STI = ZRI + ZETA2I(J) STI = ZRI + ZETA2I(J)
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = ZETA1R(J) - STR S1R = ZETA1R(J) - STR
@ -85,7 +85,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIR(J),PHII(J)) APHI = AZABS(PHIR(J),PHII(J))
RS1 = RS1 + DLOG(APHI) RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 60 IF (DABS(RS1).GT.ELIM) GO TO 60
IF (KDFLG.EQ.1) KFLAG = 1 IF (KDFLG.EQ.1) KFLAG = 1
@ -133,7 +133,7 @@ C-----------------------------------------------------------------------
70 CONTINUE 70 CONTINUE
I = N I = N
75 CONTINUE 75 CONTINUE
RAZR = 1.0D0/ZABS(ZRR,ZRI) RAZR = 1.0D0/AZABS(ZRR,ZRI)
STR = ZRR*RAZR STR = ZRR*RAZR
STI = -ZRI*RAZR STI = -ZRI*RAZR
RZR = (STR+STR)*RAZR RZR = (STR+STR)*RAZR
@ -156,7 +156,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 80 IF (KODE.EQ.1) GO TO 80
STR = ZRR + ZET2DR STR = ZRR + ZET2DR
STI = ZRI + ZET2DI STI = ZRI + ZET2DI
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = ZET1DR - STR S1R = ZET1DR - STR
@ -172,7 +172,7 @@ C-----------------------------------------------------------------------
C---------------------------------------------------------------------------- C----------------------------------------------------------------------------
C REFINE ESTIMATE AND TEST C REFINE ESTIMATE AND TEST
C------------------------------------------------------------------------- C-------------------------------------------------------------------------
APHI = ZABS(PHIDR,PHIDI) APHI = AZABS(PHIDR,PHIDI)
RS1 = RS1+DLOG(APHI) RS1 = RS1+DLOG(APHI)
IF (DABS(RS1).LT.ELIM) GO TO 100 IF (DABS(RS1).LT.ELIM) GO TO 100
95 CONTINUE 95 CONTINUE
@ -287,7 +287,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 200 IF (KODE.EQ.1) GO TO 200
STR = ZRR + ZET2DR STR = ZRR + ZET2DR
STI = ZRI + ZET2DI STI = ZRI + ZET2DI
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZET1DR + STR S1R = -ZET1DR + STR
@ -307,7 +307,7 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIDR,PHIDI) APHI = AZABS(PHIDR,PHIDI)
RS1 = RS1 + DLOG(APHI) RS1 = RS1 + DLOG(APHI)
IF (DABS(RS1).GT.ELIM) GO TO 260 IF (DABS(RS1).GT.ELIM) GO TO 260
IF (KDFLG.EQ.1) IFLAG = 1 IF (KDFLG.EQ.1) IFLAG = 1

View File

@ -12,7 +12,7 @@ C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC-
C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
C C
C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,ZABS C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,AZABS
C***END PROLOGUE ZUNK2 C***END PROLOGUE ZUNK2
C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC, C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC,
C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ, C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ,
@ -26,7 +26,7 @@ C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR
* PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN, * PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN,
* STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI, * STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI,
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI, * ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI,
* ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS * ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, AZABS
INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK, INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK,
* KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC * KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC
DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2), DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2),
@ -105,7 +105,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 30 IF (KODE.EQ.1) GO TO 30
STR = ZBR + ZETA2R(J) STR = ZBR + ZETA2R(J)
STI = ZBI + ZETA2I(J) STI = ZBI + ZETA2I(J)
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = ZETA1R(J) - STR S1R = ZETA1R(J) - STR
@ -125,8 +125,8 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIR(J),PHII(J)) APHI = AZABS(PHIR(J),PHII(J))
AARG = ZABS(ARGR(J),ARGI(J)) AARG = AZABS(ARGR(J),ARGI(J))
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 70 IF (DABS(RS1).GT.ELIM) GO TO 70
IF (KDFLG.EQ.1) KFLAG = 1 IF (KDFLG.EQ.1) KFLAG = 1
@ -193,7 +193,7 @@ C-----------------------------------------------------------------------
80 CONTINUE 80 CONTINUE
I = N I = N
85 CONTINUE 85 CONTINUE
RAZR = 1.0D0/ZABS(ZRR,ZRI) RAZR = 1.0D0/AZABS(ZRR,ZRI)
STR = ZRR*RAZR STR = ZRR*RAZR
STI = -ZRI*RAZR STI = -ZRI*RAZR
RZR = (STR+STR)*RAZR RZR = (STR+STR)*RAZR
@ -214,7 +214,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 90 IF (KODE.EQ.1) GO TO 90
STR = ZBR + ZET2DR STR = ZBR + ZET2DR
STI = ZBI + ZET2DI STI = ZBI + ZET2DI
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = ZET1DR - STR S1R = ZET1DR - STR
@ -230,7 +230,7 @@ C-----------------------------------------------------------------------
C---------------------------------------------------------------------------- C----------------------------------------------------------------------------
C REFINE ESTIMATE AND TEST C REFINE ESTIMATE AND TEST
C------------------------------------------------------------------------- C-------------------------------------------------------------------------
APHI = ZABS(PHIDR,PHIDI) APHI = AZABS(PHIDR,PHIDI)
RS1 = RS1+DLOG(APHI) RS1 = RS1+DLOG(APHI)
IF (DABS(RS1).LT.ELIM) GO TO 120 IF (DABS(RS1).LT.ELIM) GO TO 120
105 CONTINUE 105 CONTINUE
@ -291,7 +291,7 @@ C-----------------------------------------------------------------------
FMR = DBLE(FLOAT(MR)) FMR = DBLE(FLOAT(MR))
SGN = -DSIGN(PI,FMR) SGN = -DSIGN(PI,FMR)
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C CSPN AND CSGN ARE COEFF OF K AND I FUNCIONS RESP. C CSPN AND CSGN ARE COEFF OF K AND I FUNCTIONS RESP.
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
CSGNI = SGN CSGNI = SGN
IF (YY.LE.0.0D0) CSGNI = -CSGNI IF (YY.LE.0.0D0) CSGNI = -CSGNI
@ -355,7 +355,7 @@ C-----------------------------------------------------------------------
IF (KODE.EQ.1) GO TO 220 IF (KODE.EQ.1) GO TO 220
STR = ZBR + ZET2DR STR = ZBR + ZET2DR
STI = ZBI + ZET2DI STI = ZBI + ZET2DI
RAST = FN/ZABS(STR,STI) RAST = FN/AZABS(STR,STI)
STR = STR*RAST*RAST STR = STR*RAST*RAST
STI = -STI*RAST*RAST STI = -STI*RAST*RAST
S1R = -ZET1DR + STR S1R = -ZET1DR + STR
@ -375,8 +375,8 @@ C-----------------------------------------------------------------------
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C REFINE TEST AND SCALE C REFINE TEST AND SCALE
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
APHI = ZABS(PHIDR,PHIDI) APHI = AZABS(PHIDR,PHIDI)
AARG = ZABS(ARGDR,ARGDI) AARG = AZABS(ARGDR,ARGDI)
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
IF (DABS(RS1).GT.ELIM) GO TO 280 IF (DABS(RS1).GT.ELIM) GO TO 280
IF (KDFLG.EQ.1) IFLAG = 1 IF (KDFLG.EQ.1) IFLAG = 1

View File

@ -23,7 +23,7 @@ C IKFLG=2 AND NUF.EQ.N MEANS ALL Y VALUES WERE SET TO ZERO
C IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY C IKFLG=2 AND 0.LT.NUF.LT.N NOT CONSIDERED. Y MUST BE SET BY
C ANOTHER ROUTINE C ANOTHER ROUTINE
C C
C***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,ZABS,ZLOG C***ROUTINES CALLED ZUCHK,ZUNHJ,ZUNIK,D1MACH,AZABS,AZLOG
C***END PROLOGUE ZUOIK C***END PROLOGUE ZUOIK
C COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN, C COMPLEX ARG,ASUM,BSUM,CWRK,CZ,CZERO,PHI,SUM,Y,Z,ZB,ZETA1,ZETA2,ZN,
C *ZR C *ZR
@ -31,7 +31,7 @@ C *ZR
* ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN, * ASCLE, AX, AY, BSUMI, BSUMR, CWRKI, CWRKR, CZI, CZR, ELIM, FNN,
* FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI, * FNU, GNN, GNU, PHII, PHIR, RCZ, STR, STI, SUMI, SUMR, TOL, YI,
* YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI, * YR, ZBI, ZBR, ZEROI, ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZI,
* ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS * ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, AZABS
INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW INTEGER I, IDUM, IFORM, IKFLG, INIT, KODE, N, NN, NUF, NW
DIMENSION YR(N), YI(N), CWRKR(16), CWRKI(16) DIMENSION YR(N), YI(N), CWRKR(16), CWRKI(16)
DATA ZEROR,ZEROI / 0.0D0, 0.0D0 / DATA ZEROR,ZEROI / 0.0D0, 0.0D0 /
@ -78,7 +78,7 @@ C-----------------------------------------------------------------------
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) * ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
CZR = -ZETA1R + ZETA2R CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I CZI = -ZETA1I + ZETA2I
AARG = ZABS(ARGR,ARGI) AARG = AZABS(ARGR,ARGI)
50 CONTINUE 50 CONTINUE
IF (KODE.EQ.1) GO TO 60 IF (KODE.EQ.1) GO TO 60
CZR = CZR - ZBR CZR = CZR - ZBR
@ -88,7 +88,7 @@ C-----------------------------------------------------------------------
CZR = -CZR CZR = -CZR
CZI = -CZI CZI = -CZI
70 CONTINUE 70 CONTINUE
APHI = ZABS(PHIR,PHII) APHI = AZABS(PHIR,PHII)
RCZ = CZR RCZ = CZR
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
C OVERFLOW TEST C OVERFLOW TEST
@ -117,11 +117,11 @@ C-----------------------------------------------------------------------
RETURN RETURN
110 CONTINUE 110 CONTINUE
ASCLE = 1.0D+3*D1MACH(1)/TOL ASCLE = 1.0D+3*D1MACH(1)/TOL
CALL ZLOG(PHIR, PHII, STR, STI, IDUM) CALL AZLOG(PHIR, PHII, STR, STI, IDUM)
CZR = CZR + STR CZR = CZR + STR
CZI = CZI + STI CZI = CZI + STI
IF (IFORM.EQ.1) GO TO 120 IF (IFORM.EQ.1) GO TO 120
CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) CALL AZLOG(ARGR, ARGI, STR, STI, IDUM)
CZR = CZR - 0.25D0*STR - AIC CZR = CZR - 0.25D0*STR - AIC
CZI = CZI - 0.25D0*STI CZI = CZI - 0.25D0*STI
120 CONTINUE 120 CONTINUE
@ -151,13 +151,13 @@ C-----------------------------------------------------------------------
* ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI) * ZETA1I, ZETA2R, ZETA2I, ASUMR, ASUMI, BSUMR, BSUMI)
CZR = -ZETA1R + ZETA2R CZR = -ZETA1R + ZETA2R
CZI = -ZETA1I + ZETA2I CZI = -ZETA1I + ZETA2I
AARG = ZABS(ARGR,ARGI) AARG = AZABS(ARGR,ARGI)
160 CONTINUE 160 CONTINUE
IF (KODE.EQ.1) GO TO 170 IF (KODE.EQ.1) GO TO 170
CZR = CZR - ZBR CZR = CZR - ZBR
CZI = CZI - ZBI CZI = CZI - ZBI
170 CONTINUE 170 CONTINUE
APHI = ZABS(PHIR,PHII) APHI = AZABS(PHIR,PHII)
RCZ = CZR RCZ = CZR
IF (RCZ.LT.(-ELIM)) GO TO 180 IF (RCZ.LT.(-ELIM)) GO TO 180
IF (RCZ.GT.(-ALIM)) RETURN IF (RCZ.GT.(-ALIM)) RETURN
@ -173,11 +173,11 @@ C-----------------------------------------------------------------------
GO TO 140 GO TO 140
190 CONTINUE 190 CONTINUE
ASCLE = 1.0D+3*D1MACH(1)/TOL ASCLE = 1.0D+3*D1MACH(1)/TOL
CALL ZLOG(PHIR, PHII, STR, STI, IDUM) CALL AZLOG(PHIR, PHII, STR, STI, IDUM)
CZR = CZR + STR CZR = CZR + STR
CZI = CZI + STI CZI = CZI + STI
IF (IFORM.EQ.1) GO TO 200 IF (IFORM.EQ.1) GO TO 200
CALL ZLOG(ARGR, ARGI, STR, STI, IDUM) CALL AZLOG(ARGR, ARGI, STR, STI, IDUM)
CZR = CZR - 0.25D0*STR - AIC CZR = CZR - 0.25D0*STR - AIC
CZI = CZI - 0.25D0*STI CZI = CZI - 0.25D0*STI
200 CONTINUE 200 CONTINUE

View File

@ -6,12 +6,12 @@ C
C ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY C ZWRSK COMPUTES THE I BESSEL FUNCTION FOR RE(Z).GE.0.0 BY
C NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN C NORMALIZING THE I FUNCTION RATIOS FROM ZRATI BY THE WRONSKIAN
C C
C***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,ZABS C***ROUTINES CALLED D1MACH,ZBKNU,ZRATI,AZABS
C***END PROLOGUE ZWRSK C***END PROLOGUE ZWRSK
C COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR C COMPLEX CINU,CSCL,CT,CW,C1,C2,RCT,ST,Y,ZR
DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI, DOUBLE PRECISION ACT, ACW, ALIM, ASCLE, CINUI, CINUR, CSCLR, CTI,
* CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT, * CTR, CWI, CWR, C1I, C1R, C2I, C2R, ELIM, FNU, PTI, PTR, RACT,
* STI, STR, TOL, YI, YR, ZRI, ZRR, ZABS, D1MACH * STI, STR, TOL, YI, YR, ZRI, ZRR, AZABS, D1MACH
INTEGER I, KODE, N, NW, NZ INTEGER I, KODE, N, NW, NZ
DIMENSION YR(N), YI(N), CWR(2), CWI(2) DIMENSION YR(N), YI(N), CWR(2), CWI(2)
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
@ -39,7 +39,7 @@ C THE UNDER AND OVERFLOW LIMITS AND THE NORMALIZATION MUST BE
C SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT C SCALED TO PREVENT OVER OR UNDERFLOW. CUOIK HAS DETERMINED THAT
C THE RESULT IS ON SCALE. C THE RESULT IS ON SCALE.
C----------------------------------------------------------------------- C-----------------------------------------------------------------------
ACW = ZABS(CWR(2),CWI(2)) ACW = AZABS(CWR(2),CWI(2))
ASCLE = 1.0D+3*D1MACH(1)/TOL ASCLE = 1.0D+3*D1MACH(1)/TOL
CSCLR = 1.0D0 CSCLR = 1.0D0
IF (ACW.GT.ASCLE) GO TO 20 IF (ACW.GT.ASCLE) GO TO 20
@ -66,7 +66,7 @@ C-----------------------------------------------------------------------
PTI = PTI + C2I PTI = PTI + C2I
CTR = ZRR*PTR - ZRI*PTI CTR = ZRR*PTR - ZRI*PTI
CTI = ZRR*PTI + ZRI*PTR CTI = ZRR*PTI + ZRI*PTR
ACT = ZABS(CTR,CTI) ACT = AZABS(CTR,CTI)
RACT = 1.0D0/ACT RACT = 1.0D0/ACT
CTR = CTR*RACT CTR = CTR*RACT
CTI = -CTI*RACT CTI = -CTI*RACT