diff --git a/lepaper/arrayscat.lyx b/lepaper/arrayscat.lyx index 94cbed1..6ec1cc5 100644 --- a/lepaper/arrayscat.lyx +++ b/lepaper/arrayscat.lyx @@ -723,7 +723,11 @@ Truncation notation. \end_layout \begin_layout Itemize -Example results. +Example results! +\end_layout + +\begin_layout Itemize +Figures. \end_layout \begin_layout Itemize @@ -738,7 +742,7 @@ Fix and unify notation (mainly indices) in infinite lattices section. Carefully check the transformation directions in sec. \begin_inset CommandInset ref -LatexCommand eqref +LatexCommand ref reference "sec:Symmetries" plural "false" caps "false" @@ -749,6 +753,11 @@ noprefix "false" \end_layout +\begin_layout Itemize +The text about symmetries is pretty dense. + Make it more explanatory and human-readable. +\end_layout + \begin_layout Standard \begin_inset CommandInset include LatexCommand include diff --git a/lepaper/symmetries.lyx b/lepaper/symmetries.lyx index aac8e5e..6d7ee9a 100644 --- a/lepaper/symmetries.lyx +++ b/lepaper/symmetries.lyx @@ -180,7 +180,7 @@ noprefix "false" \end_layout \begin_layout Subsection -Finite systems +Excitation coefficients under point group operations \end_layout \begin_layout Standard @@ -397,7 +397,7 @@ noprefix "false" of the electric field around origin in a rotated/reflected system, \begin_inset Formula \[ -\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}lm\left(k\vect r\right)+D_{m,m'}^{\tau l}\left(g\right)\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right), +\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right), \] \end_inset @@ -491,8 +491,297 @@ literal "false" \end_layout \begin_layout Standard -With these point group transformation properties in hand, we can proceed - to rotating (or mirror-reflecting) the whole many-particle system. +If the field expansion is done around a point +\begin_inset Formula $\vect r_{p}$ +\end_inset + + different from the global origin, as in +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:E field expansion multiparticle" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, we have +\lang english + +\begin_inset Formula +\begin{align} +\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin} +\end{align} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Float figure +placement document +alignment document +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Scatterer orbits under +\begin_inset Formula $D_{2}$ +\end_inset + + symmetry. + Particles +\begin_inset Formula $A,B,C,D$ +\end_inset + + lie outside of origin or any mirror planes, and together constitute an + orbit of the size equal to the order of the group, +\begin_inset Formula $\left|D_{2}\right|=4$ +\end_inset + +. + Particles +\begin_inset Formula $E,F$ +\end_inset + + lie on the +\begin_inset Formula $xz$ +\end_inset + + plane, hence the corresponding reflection maps each of them to itself, + but the +\begin_inset Formula $yz$ +\end_inset + + reflection (or the +\begin_inset Formula $\pi$ +\end_inset + + rotation around the +\begin_inset Formula $z$ +\end_inset + + axis) maps them to each other, forming a particle orbit of size 2 +\begin_inset Note Note +status open + +\begin_layout Plain Layout +=??? +\end_layout + +\end_inset + +. + The particle +\begin_inset Formula $O$ +\end_inset + + in the very origin is always mapped to itself, constituting its own orbit. +\begin_inset CommandInset label +LatexCommand label +name "fig:D2-symmetric structure particle orbits" + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO restructure this +\end_layout + +\end_inset + +With these transformation properties in hand, we can proceed to the effects + of point symmetries on the whole many-particle system. + Let us have a many-particle system symmetric with respect to a point group + +\begin_inset Formula $G$ +\end_inset + +. + A symmetry operation +\begin_inset Formula $g\in G$ +\end_inset + + determines a permutation of the particles: +\begin_inset Formula $p\mapsto\pi_{g}(p)$ +\end_inset + +, +\begin_inset Formula $p\in\mathcal{P}$ +\end_inset + +. + For a given particle +\begin_inset Formula $p$ +\end_inset + +, we will call the set of particles onto which any of the symmetries maps + the particle +\begin_inset Formula $p$ +\end_inset + +, i.e. + the set +\begin_inset Formula $\left\{ \pi_{g}\left(p\right);g\in G\right\} $ +\end_inset + +, as the +\emph on +orbit +\emph default + of particle +\begin_inset Formula $p$ +\end_inset + +. + The whole set +\begin_inset Formula $\mathcal{P}$ +\end_inset + + can therefore be divided into the different particle orbits; an example + is in Fig. + +\begin_inset CommandInset ref +LatexCommand ref +reference "fig:D2-symmetric structure particle orbits" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + The importance of the particle orbits stems from the following: in the + multiple-scattering problem, outside of the scatterers +\begin_inset Note Note +status open + +\begin_layout Plain Layout +< FIXME +\end_layout + +\end_inset + + one has +\lang english + +\begin_inset Formula +\begin{align} +\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\ + & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right). +\end{align} + +\end_inset + +This means that the field expansion coefficients +\begin_inset Formula $\rcoeffp p,\outcoeffp p$ +\end_inset + + transform as +\begin_inset Formula +\begin{align} +\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\ +\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation} +\end{align} + +\end_inset + +Obviously, the expansion coefficients belonging to particles in different + orbits do not mix together. + As before, we introduce a short-hand block-matrix notation for +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:excitation coefficient under symmetry operation" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + (TODO avoid notation clash here in a more consistent and readable way!) +\end_layout + +\begin_layout Standard + +\lang english +\begin_inset Formula +\begin{align} +\rcoeff & \mapsto J\left(g\right)a,\nonumber \\ +\outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form} +\end{align} + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\lang english +The matrices +\begin_inset Formula $D\left(g\right)$ +\end_inset + +, +\begin_inset Formula $g\in G$ +\end_inset + + will play a crucial role blablabla +\end_layout + +\end_inset + +If the particle indices are ordered in a way that the particles belonging + to the same orbit are grouped together, +\begin_inset Formula $J\left(g\right)$ +\end_inset + + will be a block-diagonal matrix, each block representing one particle orbit. +\end_layout + +\begin_layout Subsection +Irrep decomposition +\end_layout + +\begin_layout Standard +Knowledge of symmetry group actions +\begin_inset Formula $D\left(g\right)$ +\end_inset + + on the field expansion coefficients give us the possibility to construct + a symmetry adapted basis in which we can block-diagonalise the multiple-scatter +ing problem matrix +\begin_inset Formula $\left(I-TS\right)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard + \end_layout \begin_layout Subsection @@ -501,6 +790,12 @@ Periodic systems \begin_layout Standard +\lang english +\begin_inset Note Note +status open + +\begin_layout Plain Layout + \lang english A general overview of utilizing group theory to find lattice modes at high-symme try points of the Brillouin zone can be found e.g. @@ -516,7 +811,7 @@ literal "true" ; here we use the same notation. \end_layout -\begin_layout Standard +\begin_layout Plain Layout \lang english We analyse the symmetries of the system in the same VSWF representation @@ -671,7 +966,7 @@ where . \end_layout -\begin_layout Standard +\begin_layout Plain Layout \lang english Each mode at the @@ -717,5 +1012,10 @@ reference "smfig:dispersions" (a). \end_layout +\end_inset + + +\end_layout + \end_body \end_document