Beyn solver new API

Former-commit-id: cb242415d66acebd42aa6c12ef74696f5dea85de
This commit is contained in:
Marek Nečada 2019-08-29 17:18:59 +03:00
parent 4c21fde628
commit 537c4b2d37
3 changed files with 48 additions and 54 deletions

View File

@ -58,7 +58,7 @@ void ReRandomize(BeynSolver *Solver, unsigned int RandSeed);
// Beyn method for elliptical contour of horizontal, vertical
// radii Rx, Ry, centered at z0, using N quadrature points
int BeynSolve(BeynSolver *Solver,
beyn_function_M_t M_function, beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *params,
beyn_function_M_gsl_t M_function, beyn_function_M_inv_Vhat_gsl_t M_inv_Vhat_function, void *params,
double complex z0, double Rx, double Ry, int N);
@ -81,12 +81,13 @@ beyn_contour_t *beyn_contour_ellipse(complex double centre, double rRe, double r
{
beyn_contour_t *c;
QPMS_CRASHING_MALLOC(c, sizeof(beyn_contour_t) + n*sizeof(c->z_dz[0]));
c->centre = centre;
c->n = n;
for(size_t i = 0; i < n; ++i) {
double t = i*2*M_PI/n;
double st = sin(t), ct = cos(t);
c->z_zd[i][0] = centre + ct*rRe + st*rIm;
c->z_zd[i][1] = (I*rRe*st + rIm*ct) / n;
c->z_dz[i][0] = centre + ct*rRe + I*st*rIm;
c->z_dz[i][1] = (I*rRe*st + rIm*ct) / n;
}
return c;
}
@ -161,7 +162,7 @@ void DestroyBeynSolver(BeynSolver *Solver)
free(Solver);
}
void DestroyBeynSolverPartial(BeynSolver *solver)
void DestroyBeynSolverPartial(BeynSolver *Solver)
{
gsl_matrix_complex_free(Solver->A0);
gsl_matrix_complex_free(Solver->A1);
@ -198,10 +199,10 @@ void ReRandomize(BeynSolver *Solver, unsigned int RandSeed)
/* eigenvalues and eigenvectors */
/***************************************************************/
int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_gsl_t M_function,
void *Params,
gsl_matrix_complex *A0, gsl_matrix_complex *A1, double complex z0,
gsl_vector_complex *Eigenvalues, gsl_matrix_complex *Eigenvectors)
gsl_vector_complex *Eigenvalues, gsl_matrix_complex *Eigenvectors, const double RankTol, const double ResTol)
{
int M = Solver->M;
int L = Solver->L;
@ -209,8 +210,8 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
int Verbose = 1;//CheckEnv("SCUFF_BEYN_VERBOSE");
double RankTol=1.0e-4; //CheckEnv("SCUFF_BEYN_RANK_TOL",&RankTol);
double ResTol=0.0; // CheckEnv("SCUFF_BEYN_RES_TOL",&ResTol);
//double RankTol=1.0e-4; //CheckEnv("SCUFF_BEYN_RANK_TOL",&RankTol);
//double ResTol=0.0; // CheckEnv("SCUFF_BEYN_RES_TOL",&ResTol);
// A0 -> V0Full * Sigma * W0TFull'
printf(" Beyn: computing SVD...\n");
@ -249,8 +250,6 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
return 0;
}
// set V0, W0T = matrices of first K right, left singular vectors
gsl_matrix_complex *V0 = gsl_matrix_complex_alloc(M,K);
gsl_matrix_complex *W0T= gsl_matrix_complex_alloc(K,L);
@ -266,7 +265,6 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_matrix_complex_free(V0Full);
gsl_matrix_complex_free(W0TFull);
// B <- V0' * A1 * W0 * Sigma^-1
gsl_matrix_complex *TM2 = gsl_matrix_complex_calloc(K,L);
gsl_matrix_complex *B = gsl_matrix_complex_calloc(K,K);
@ -278,7 +276,6 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, one,
V0, A1, zero, TM2);
printf(" Multiplying TM*W0T->B...\n");
//TM2.Multiply(&W0T, &B, "--transB C"); // B <- TM2 * W0
@ -302,7 +299,6 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
// for(int n=0; n<K; n++)
// B.ScaleEntry(m,n,1.0/Sigma->GetEntry(n));
// B -> S*Lambda*S'
printf(" Eigensolving (%i,%i)\n",K,K);
@ -335,7 +331,6 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_matrix_complex_free(V0);
int KRetained = 0;
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(M,M);
gsl_vector_complex *MVk = gsl_vector_complex_alloc(M);
@ -373,17 +368,25 @@ int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
/***************************************************************/
/***************************************************************/
/***************************************************************/
#if 0
int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *Params,
double complex z0, double Rx, double Ry, int N)
#endif
int beyn_solve_gsl(beyn_result_gsl_t **result, size_t m, size_t l,
beyn_function_M_gsl_t M_function, beyn_function_M_inv_Vhat_gsl_t M_inv_Vhat_function,
void *params, const beyn_contour_t *contour,
double rank_tol, double res_tol)
{
BeynSolver *Solver = CreateBeynSolver(m, l);
/***************************************************************/
/* force N to be even so we can simultaneously evaluate */
/* the integral with N/2 quadrature points */
/***************************************************************/
if ( (N%2)==1 ) N++;
// if ( (N%2)==1 ) N++;
/*if (Rx==Ry)
printf("Applying Beyn method with z0=%s,R=%e,N=%i...\n",z2s(z0),Rx,N);
@ -408,13 +411,13 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_matrix_complex_set_zero(A1);
gsl_matrix_complex_set_zero(A0Coarse);
gsl_matrix_complex_set_zero(A1Coarse);
size_t N = contour->n;
double DeltaTheta = 2.0*M_PI / ((double)N);
printf(" Evaluating contour integral (%i points)...\n",N);
printf(" Evaluating contour integral (%zd points)...\n",N);
const complex double z0 = contour->centre;
for(int n=0; n<N; n++) {
double Theta = ((double)n)*DeltaTheta;
double CT = cos(Theta), ST=sin(Theta);
complex double z1 = Rx*CT + I*Ry*ST;
complex double dz = (I*Rx*ST + Ry*CT) / N;
const complex double z = contour->z_dz[n][0];
const complex double dz = contour->z_dz[n][1];
//MInvVHat->Copy(VHat);
// Mitä varten tämä kopiointi on?
@ -424,11 +427,11 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
// Output ilmeisesti tallentuun neljänteen parametriin
if(M_inv_Vhat_function) {
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z0+z1, Params));
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z, params));
} else {
lapack_int *pivot;
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(M,M);
QPMS_ENSURE_SUCCESS(M_function(Mmat, z0+z1, Params));
QPMS_ENSURE_SUCCESS(M_function(Mmat, z, params));
QPMS_CRASHING_MALLOC(pivot, sizeof(lapack_int) * M);
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrf(LAPACK_ROW_MAJOR,
M /*m*/, M /*n*/,(lapack_complex_double *) Mmat->data /*a*/, Mmat->tda /*lda*/, pivot /*ipiv*/));
@ -437,11 +440,10 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
M /*n*/, L/*nrhs*/, (lapack_complex_double *)(Mmat->data) /*a*/, Mmat->tda /*lda*/, pivot/*ipiv*/,
(lapack_complex_double *)(MInvVHat->data) /*b*/, MInvVHat->tda/*ldb*/));
free(pivot);
gsl_matrix_complex_free(Mmat);
}
//UserFunc(z0+zz, Params, VHat, MInvVHat);
//UserFunc(z0+zz, params, VHat, MInvVHat);
gsl_matrix_complex_scale(MInvVHat, cs2g(dz));
gsl_matrix_complex_add(A0, MInvVHat);
@ -450,7 +452,7 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_matrix_complex_add(A0Coarse, MInvVHat);
}
gsl_matrix_complex_scale(MInvVHat, cs2g(z1));
gsl_matrix_complex_scale(MInvVHat, cs2g(z - z0));
gsl_matrix_complex_add(A1, MInvVHat);
if((n%2)==0) {
gsl_matrix_complex_add(A1Coarse, MInvVHat);
@ -462,31 +464,21 @@ int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
gsl_vector_complex *EVErrors = Solver->EVErrors;
gsl_matrix_complex *Eigenvectors = Solver->Eigenvectors;
int K = ProcessAMatrices(Solver, M_function, Params, A0, A1, z0, Eigenvalues, Eigenvectors);
int KCoarse = ProcessAMatrices(Solver, M_function, Params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors);
int K = ProcessAMatrices(Solver, M_function, params, A0, A1, z0, Eigenvalues, Eigenvectors, rank_tol, res_tol);
int KCoarse = ProcessAMatrices(Solver, M_function, params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors, rank_tol, res_tol);
// Log("{K,KCoarse}={%i,%i}",K,KCoarse);
gsl_blas_zaxpy(gsl_complex_rect(-1,0), Eigenvalues, EVErrors);
#if 0
for(size_t k = 0; k < EVErrors->size && k < Eigenvalues->size; ++k) {
// TODO Original did also fabs on the complex and real parts ^^^.
QPMS_CRASHING_MALLOC(*result, sizeof(beyn_result_gsl_t));
(*result)->eigval = Solver->Eigenvalues;
(*result)->eigval_err = Solver->EVErrors;
(*result)->residuals = Solver->Residuals;
(*result)->eigvec = Solver->Eigenvectors;
DestroyBeynSolverPartial(Solver);
EVErrors->ZV[k] -= Eigenvalues->ZV[k];
EVErrors->ZV[k] = cdouble( fabs(real(EVErrors->ZV[k])),
fabs(imag(EVErrors->ZV[k]))
);
}
#endif
return K;
}
// This is currently just a wrapper over the old mess that is to be rewritten gradually.
int beyn_solve_gsl(beyn_result_gsl_t **result, size_t m, size_t l,
beyn_function_M_gsl_t M, beyn_function_M_inv_Vhat_gsl_t M_inv_Vhat, void *params,
const beyn_contour_t *contour, double rank_tol, double res_tol)
{
return 0;
}

View File

@ -16,6 +16,7 @@ typedef int (*beyn_function_M_inv_Vhat_gsl_t)(gsl_matrix_complex *target_M_inv_V
/// Complex plane integration contour structure.
typedef struct beyn_contour_t {
size_t n; ///< Number of discretisation points.
complex double centre; ///< TODO what is the exact purpose of this?
complex double z_dz[][2]; ///< Pairs of contour points and derivatives in that points.
} beyn_contour_t;

View File

@ -24,17 +24,18 @@ int main() {
complex double z0 = 150+2*I;
double Rx = 148, Ry = 148;
int L = 10, N = 50, dim = 400;
BeynSolver * solver = CreateBeynSolver(dim, L);
ReRandomize(solver, 666);
beyn_contour_t *contour = beyn_contour_ellipse(z0, Rx, Ry, N);
int K = BeynSolve(solver, M_function, NULL /*M_inv_Vhat_function*/, NULL /*params*/,
z0, Rx, Ry, N);
beyn_result_gsl_t *result;
int K = beyn_solve_gsl(&result, dim, L, M_function, NULL /*M_inv_Vhat_function*/, NULL /*params*/,
contour, 1e-4, 0);
printf("Found %d eigenvalues:\n", K);
for (int i = 0; i < K; ++i) {
gsl_complex eig = gsl_vector_complex_get(solver->Eigenvalues, i);
gsl_complex eig = gsl_vector_complex_get(result->eigval, i);
printf("%d: %g%+gj\n", i, GSL_REAL(eig), GSL_IMAG(eig));
}
DestroyBeynSolver(solver);
free(contour);
beyn_result_gsl_free(result);
return 0;
}