From 53f3e33a0bfcdef59292baff90a4b7b319faacf1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 16 Jan 2018 11:58:40 +0000 Subject: [PATCH] Hankel transforms: special case q=3, n=1 Former-commit-id: 9b8fba612a8daf304672cde14296f47abf482986 --- notes/ewald-calculations-apr1.lyx | 63 +++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) diff --git a/notes/ewald-calculations-apr1.lyx b/notes/ewald-calculations-apr1.lyx index 6a0a217..ca02b36 100644 --- a/notes/ewald-calculations-apr1.lyx +++ b/notes/ewald-calculations-apr1.lyx @@ -338,6 +338,69 @@ The final result has asymptotic behaviour of ... . \end_layout +\begin_layout Subparagraph +Special case +\begin_inset Formula $q=3,n=1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\ + & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{1-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right) +\end{eqnarray*} + +\end_inset + +Let's hope that the left term (sum) in the big round brackets is zero for + +\begin_inset Formula $\kappa\ge3$ +\end_inset + + (verified numerically, see file xxx; and BTW numerics show that it is zero + also when +\begin_inset Formula $k3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\kor{k^{1-2s}}\left(\sigma c-ik_{0}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\ + & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}\koru k}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\koru{\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k} +\end{eqnarray*} + +\end_inset + +and Mathematica tells us that +\begin_inset Formula +\begin{eqnarray*} +\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}x^{s} & = & 2\frac{\sqrt{x\left(1-x\right)}\sin^{-1}\sqrt{x}}{\sqrt{\pi}\sqrt{x}}\\ +\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}(-1)^{s}y^{2s} & = & 2\frac{y\sqrt{1+y^{2}}+\sinh^{-1}y}{\sqrt{\pi}y} +\end{eqnarray*} + +\end_inset + +so +\begin_inset Formula +\begin{eqnarray*} +\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\ + & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right) +\end{eqnarray*} + +\end_inset + + +\end_layout + \begin_layout Paragraph Small k \end_layout