Duspát
Former-commit-id: 03503b9541198b86495636cef73271f5cce1d759
This commit is contained in:
parent
de316bdfb1
commit
577a4a5a28
126
qpms/ewald.c
126
qpms/ewald.c
|
@ -340,6 +340,132 @@ int ewald32_sigma_long_points_and_shift (
|
|||
return 0;
|
||||
}
|
||||
|
||||
int ewald3_21_xy_sigma_long (
|
||||
complex double *target, // must be c->nelem_sc long
|
||||
double *err,
|
||||
const qpms_ewald32_constants_t *c,
|
||||
const double unitcell_volume /* with the corresponding lattice dimensionality */,
|
||||
const LatticeDimensionality latdim,
|
||||
PGenSph *pgen_K, const bool pgen_generates_shifted_points
|
||||
/* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift,
|
||||
* so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice,
|
||||
* and adds beta to the generated points before calculations.
|
||||
* If true, it assumes that they are already shifted.
|
||||
*/,
|
||||
const cart3_t beta,
|
||||
const cart3_t particle_shift
|
||||
)
|
||||
|
||||
{
|
||||
const qpms_y_t nelem_sc = c->nelem_sc;
|
||||
const qpms_l_t lMax = c->lMax;
|
||||
|
||||
// Manual init of the ewald summation targets
|
||||
complex double *target_c = calloc(nelem_sc, sizeof(complex double));
|
||||
memset(target, 0, nelem_sc * sizeof(complex double));
|
||||
double *err_c = NULL;
|
||||
if (err) {
|
||||
err_c = calloc(nelem_sc, sizeof(double));
|
||||
memset(err, 0, nelem_sc * sizeof(double));
|
||||
}
|
||||
|
||||
const double commonfac = 1/(k*k*unitcell_area); // used in the very end (CFC)
|
||||
assert(commonfac > 0);
|
||||
|
||||
PGenSingleReturnData pgen_retdata;
|
||||
#ifndef NDEBUG
|
||||
double rbeta_pq_prev;
|
||||
#endif
|
||||
// recycleable values if rbeta_pq stays the same:
|
||||
complex double gamma_pq;
|
||||
complex double z;
|
||||
// space for Gamma_pq[j]'s
|
||||
qpms_csf_result Gamma_pq[lMax/2+1];
|
||||
|
||||
// CHOOSE POINT BEGIN
|
||||
while ((pgen_retdata = PGenSph_next(pgen_K)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP
|
||||
cart3_t K_pq_cart;
|
||||
sph_t beta_pq_sph;
|
||||
if (pgen_generates_shifted_points) {
|
||||
beta_pq_sph = pgen_retdata.point_sph;
|
||||
const cart3_t beta_pq_cart = sph2cart(beta_pq_sph);
|
||||
K_pq_cart = cart3_add(cart3_scale(-1, beta), beta_pq_cart);
|
||||
} else { // as in the old _points_and_shift functions
|
||||
const sph_t K_pq_sph = pgen_retdata.point_sph;
|
||||
K_pq_cart = sph2cart(K_pq_sph);
|
||||
const cart3_t beta_pq_cart = cart3_add(K_pq_cart, beta);
|
||||
beta_pq_sph = cart2sph(beta_pq_cart);
|
||||
}
|
||||
|
||||
const double rbeta_pq = beta_pq_sph.r;
|
||||
const double arg_pq = beta_pq_sph.phi;
|
||||
const double beta_pq_theta = beta_pq_sph.theta;
|
||||
|
||||
// CHOOSE POINT END
|
||||
|
||||
const complex double phasefac = cexp(I*cart3_dot(K_pq_cart,particle_shift)); // POINT-DEPENDENT (PFC) // !!!CHECKSIGN!!!
|
||||
|
||||
const bool new_rbeta_pq = (!pgen_generates_shifted_points) || (pgen_retdata.flags & PGEN_NEWR);
|
||||
if (!new_rbeta_pq) assert(rbeta_pq == rbeta_pq_prev);
|
||||
|
||||
// R-DEPENDENT BEGIN
|
||||
if (new_rbeta_pq) {
|
||||
gamma_pq = lilgamma(rbeta_pq/k);
|
||||
z = csq(gamma_pq*k/(2*eta)); // Když o tom tak přemýšlím, tak tohle je vlastně vždy reálné
|
||||
for(qpms_l_t j = 0; j <= lMax/2; ++j) {
|
||||
int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j);
|
||||
// we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above
|
||||
if(creal(z) < 0)
|
||||
Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above
|
||||
if(!(retval==0 ||retval==GSL_EUNDRFLW)) abort();
|
||||
}
|
||||
// --------------- ZDE JSEM SKONČIL. TODO NEZAPOMEŇ TAKY POŘEŠIT PŘÍPAD 1D VS 2D
|
||||
}
|
||||
// R-DEPENDENT END
|
||||
|
||||
// TODO optimisations: all the j-dependent powers can be done for each j only once, stored in array
|
||||
// and just fetched for each n, m pair
|
||||
for(qpms_l_t n = 0; n <= lMax; ++n)
|
||||
for(qpms_m_t m = -n; m <= n; ++m) {
|
||||
if((m+n) % 2 != 0) // odd coefficients are zero.
|
||||
continue;
|
||||
const qpms_y_t y = qpms_mn2y_sc(m, n);
|
||||
const complex double e_imalpha_pq = cexp(I*m*arg_pq);
|
||||
complex double jsum, jsum_c; ckahaninit(&jsum, &jsum_c);
|
||||
double jsum_err, jsum_err_c; kahaninit(&jsum_err, &jsum_err_c); // TODO do I really need to kahan sum errors?
|
||||
assert((n-abs(m))/2 == c->s1_jMaxes[y]);
|
||||
for(qpms_l_t j = 0; j <= c->s1_jMaxes[y]/*(n-abs(m))/2*/; ++j) { // FIXME </<= ?
|
||||
complex double summand = pow(rbeta_pq/k, n-2*j)
|
||||
* e_imalpha_pq * c->legendre0[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m) // This line can actually go outside j-loop
|
||||
* cpow(gamma_pq, 2*j-1) // * Gamma_pq[j] bellow (GGG) after error computation
|
||||
* c->s1_constfacs[y][j];
|
||||
if(err) {
|
||||
// FIXME include also other errors than Gamma_pq's relative error
|
||||
kahanadd(&jsum_err, &jsum_err_c, Gamma_pq[j].err * cabs(summand));
|
||||
}
|
||||
summand *= Gamma_pq[j].val; // GGG
|
||||
ckahanadd(&jsum, &jsum_c, summand);
|
||||
}
|
||||
jsum *= phasefac; // PFC
|
||||
ckahanadd(target + y, target_c + y, jsum);
|
||||
if(err) kahanadd(err + y, err_c + y, jsum_err);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
rbeta_pq_prev = rbeta_pq;
|
||||
#endif
|
||||
} // END POINT LOOP
|
||||
|
||||
free(err_c);
|
||||
free(target_c);
|
||||
for(qpms_y_t y = 0; y < nelem_sc; ++y) // CFC common factor from above
|
||||
target[y] *= commonfac;
|
||||
if(err)
|
||||
for(qpms_y_t y = 0; y < nelem_sc; ++y)
|
||||
err[y] *= commonfac;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct sigma2_integrand_params {
|
||||
int n;
|
||||
|
|
Loading…
Reference in New Issue