Ewald.h doxygen

Former-commit-id: b89871b97680d5262637e7c1af2186c1d1307a84
This commit is contained in:
Marek Nečada 2019-08-17 13:31:38 +03:00
parent 7b8e7d39e5
commit 5820de30ef
1 changed files with 16 additions and 5 deletions

View File

@ -35,15 +35,21 @@
#include "qpms_types.h" #include "qpms_types.h"
#include "lattices.h" #include "lattices.h"
// Use this handler to ignore underflows of incomplete gamma. /// Use this handler to ignore underflows of incomplete gamma.
gsl_error_handler_t IgnoreUnderflowsGSLErrorHandler; gsl_error_handler_t IgnoreUnderflowsGSLErrorHandler;
/* Object holding the constant factors from [1, (4.5)] */ /// Object holding the Ewald sum constant factors.
/**
* Used internally by qpms_translation_calculator_t.
* Initialised by qpms_ewald3_constants_init() and freed by qpms_ewald3_constants_free().
*/
typedef struct { typedef struct {
qpms_l_t lMax; qpms_l_t lMax;
qpms_y_t nelem_sc; qpms_y_t nelem_sc;
/// The values of maximum \a j's in the long-range part summation, `[(l-|m|/2)]`.
qpms_l_t *s1_jMaxes; qpms_l_t *s1_jMaxes;
/// The constant factors for the long range part of a 2D Ewald sum.
complex double **s1_constfacs; // indices [y][j] where j is same as in [1, (4.5)] complex double **s1_constfacs; // indices [y][j] where j is same as in [1, (4.5)]
/* These are the actual numbers now: (in the EWALD32_CONSTANTS_AGNOSTIC version) /* These are the actual numbers now: (in the EWALD32_CONSTANTS_AGNOSTIC version)
* for m + n EVEN: * for m + n EVEN:
@ -58,17 +64,22 @@ typedef struct {
* *
* s1_constfacs[y(m,n)][j] = 0 * s1_constfacs[y(m,n)][j] = 0
*/ */
complex double *s1_constfacs_base; // internal pointer holding the memory for the constants complex double *s1_constfacs_base; ///< Internal pointer holding memory for the 2D Ewald sum constant factors.
// similarly for the 1D z-axis aligned case; now the indices are [n][j] (as m == 0) // similarly for the 1D z-axis aligned case; now the indices are [n][j] (as m == 0)
/// The constant factors for the long range part of a 1D Ewald sum along the \a z axis.
/** If the summation points lie along a different direction, use the formula for
* 2D sum with additional factor of
* \f$ \sqrt{pi} \kappa \gamma(\abs{\vect{k}+\vect{K}}/\kappa) \f$.
*/
complex double **s1_constfacs_1Dz; complex double **s1_constfacs_1Dz;
/* These are the actual numbers now: /* These are the actual numbers now:
* s1_consstfacs_1Dz[n][j] = * s1_constfacs_1Dz[n][j] =
* *
* -I**(n+1) (-1)**j * n! * -I**(n+1) (-1)**j * n!
* -------------------------- * --------------------------
* j! * 2**(2*j) * (n - 2*j)! * j! * 2**(2*j) * (n - 2*j)!
*/ */
complex double *s1_constfacs_1Dz_base; complex double *s1_constfacs_1Dz_base; ///<Internal pointer holding memory for the 1D Ewald sum constant factors.
double *legendre0; /* now with GSL_SF_LEGENDRE_NONE normalisation, because this is what is double *legendre0; /* now with GSL_SF_LEGENDRE_NONE normalisation, because this is what is
* what the multipliers from translations.c count with. * what the multipliers from translations.c count with.