Definition of a structure specifying any 3D point groups.

Former-commit-id: b329c8136605e0b8c20bd1c2e562a52829e4c4c8
This commit is contained in:
Marek Nečada 2019-07-16 16:05:17 +03:00
parent 3a1adeaa25
commit 5aa855af19
1 changed files with 31 additions and 2 deletions

View File

@ -334,7 +334,7 @@ typedef struct qpms_tmatrix_t {
typedef enum { typedef enum {
// Axial groups // Axial groups
QPMS_PGS_CN, ///< Rotational symmetry \f$ \mathrm{C_{nv}} \f$. QPMS_PGS_CN, ///< Rotational symmetry \f$ \mathrm{C_{n}} \f$.
QPMS_PGS_S2N, ///< Rotoreflectional symmetry \f$ \mathrm{S_{2n}} \f$. QPMS_PGS_S2N, ///< Rotoreflectional symmetry \f$ \mathrm{S_{2n}} \f$.
QPMS_PGS_CNH, ///< Rotational symmetry with horizontal reflection \f$ \mathrm{C_{nh}} \f$. QPMS_PGS_CNH, ///< Rotational symmetry with horizontal reflection \f$ \mathrm{C_{nh}} \f$.
QPMS_PGS_CNV, ///< Pyramidal symmetry \f$ \mathrm{C_{nv}} \f$. QPMS_PGS_CNV, ///< Pyramidal symmetry \f$ \mathrm{C_{nv}} \f$.
@ -361,7 +361,36 @@ typedef enum {
// Remaining continuous groups // Remaining continuous groups
QPMS_PGS_SO3, ///< Special orthogonal group \f$ \mathrm{SO(3)}. QPMS_PGS_SO3, ///< Special orthogonal group \f$ \mathrm{SO(3)}.
QPMS_PGS_O3, ///< Orthogonal group \f$ \mathrm{O(3)}. QPMS_PGS_O3, ///< Orthogonal group \f$ \mathrm{O(3)}.
} qpms_pgs_class; } qpms_pointgroup_class;
/// Full characterisation of a 3D point group.
typedef struct qpms_pointgroup_t {
qpms_pointgroup_class c; ///< Point group classification.
size_t n; ///< Order of the rotational subgroup \f$ \mathrm{C_n} \f$ of finite axial groups.
/// Transformation between this point group and the "canonical" point group of the same type.
/**
* Each 3D point group of a given type (specified by the \a c
* and \a n members) has its isomorphous "canonical instance",
* typically with the main rotation axis identical to the \a z
* cartesian axis and a mirror plane (if applicable) orthogonal
* to the \a x cartesian axis.
*
* If \f$ o \f$ is a transformation specified by \a orientation,
* then an element \f$ g \f$ of this group can be written
* as \f[
* g = o g_\mathrm{can.} o^{-1}
* \f] where \f$ g_\mathrm{can.} \f$ is a corresponding element
* from the canonical instance.
*
* CHECKME \f$ o \f$ transforms the cartesian \a z axis to the
* main rotation axis of this group (if applicable).
*
* TODO more detailed specification about the canonical instances
* and in which direction \a orientation goes.
*/
qpms_irot3_t orientation;
} qpms_pgs_t;
#define lmcheck(l,m) assert((l) >= 1 && abs(m) <= (l)) #define lmcheck(l,m) assert((l) >= 1 && abs(m) <= (l))