Split trans_calculator to a separate extension
Former-commit-id: eb6a55246e0fab6078906e317e31611f385a677d
This commit is contained in:
parent
0504f98bc0
commit
5d1f05984e
|
@ -5,6 +5,7 @@ from .qpms_c import *
|
|||
from .qpms_p import *
|
||||
from .cyquaternions import CQuat, IRot3
|
||||
from .cybspec import VSWFNorm, BaseSpec
|
||||
from .cytranslations import trans_calculator
|
||||
from .lattices2d import *
|
||||
from .hexpoints import *
|
||||
from .tmatrices import *
|
||||
|
|
|
@ -0,0 +1,594 @@
|
|||
import numpy as np
|
||||
import cmath
|
||||
from qpms_cdefs cimport *
|
||||
from .cycommon import *
|
||||
from .cybspec cimport *
|
||||
cimport cython
|
||||
from cython.parallel cimport parallel, prange
|
||||
from libc.stdlib cimport malloc, free, calloc, abort
|
||||
|
||||
cdef int q_max(int m, int n, int mu, int nu):
|
||||
return min(n,nu,(n+nu-abs(m+mu)//2))
|
||||
|
||||
"""
|
||||
Now we generate our own universal functions to be used with numpy.
|
||||
|
||||
Good way to see how this is done is to look at scipy/scipy/special/generate_ufuncs.py
|
||||
and scipy/scipy/special/generate_ufuncs.py
|
||||
|
||||
In simple words, it works like this:
|
||||
- Let's have a single element function. This can be function which returns or a "subroutine".
|
||||
- Then we need a loop function; this is a wrapper that gets bunch of pointers from numpy and
|
||||
has to properly call the single element function.
|
||||
- From those two, we build a python object using PyUFunc_FromFuncAndData.
|
||||
* If the ufunc is supposed to work on different kinds of input/output types,
|
||||
then a pair of single-element and loop functions is o be provided for
|
||||
each combination of types. However, the single-element function can be reused if
|
||||
the corresponding loop functions do the proper casting.
|
||||
"""
|
||||
|
||||
## as in scipy/special/_ufuncs_cxx.pyx
|
||||
##-------------------------------------
|
||||
#cdef extern from "numpy/ufuncobject.h":
|
||||
# int PyUFunc_getfperr() nogil
|
||||
#
|
||||
#cdef public int wrap_PyUFunc_getfperr() nogil:
|
||||
# """
|
||||
# Call PyUFunc_getfperr in a context where PyUFunc_API array is initialized;
|
||||
#
|
||||
# """
|
||||
# return PyUFunc_getfperr()
|
||||
#
|
||||
#cimport sf_error
|
||||
#-------------------------------------
|
||||
|
||||
|
||||
|
||||
cdef void loop_D_iiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<void**>data)#[0]
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef cdouble ov0
|
||||
for i in range(n): # iterating over dimensions
|
||||
ov0 = (<double complex(*)(int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
(<cdouble *>op0)[0] = <cdouble>ov0
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
|
||||
|
||||
# Module initialisation
|
||||
# ---------------------
|
||||
|
||||
np.import_array() # not sure whether this is really needed
|
||||
np.import_ufunc()
|
||||
|
||||
# Arrays passed to PyUFunc_FromFuncAndData()
|
||||
# ------------------------------------------
|
||||
|
||||
# BTW, aren't there anonymous arrays in cython?
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_X_taylor_loop_func[1]
|
||||
cdef void *trans_A_taylor_elementwise_funcs[1]
|
||||
cdef void *trans_B_taylor_elementwise_funcs[1]
|
||||
|
||||
trans_X_taylor_loop_func[0] = loop_D_iiiidddii_As_D_lllldddbl
|
||||
|
||||
# types to be used for all of the single-type translation
|
||||
# coefficient retrieval ufuncs called like
|
||||
# coeff = func(m, n, mu, nu, r, theta, phi, r_ge_d, J)
|
||||
# currently supported signatures: (D_lllldddbl)
|
||||
cdef char ufunc__get_either_trans_coeff_types[10]
|
||||
ufunc__get_either_trans_coeff_types[0] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[1] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[2] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[3] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[4] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[5] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[6] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[7] = np.NPY_BOOL
|
||||
ufunc__get_either_trans_coeff_types[8] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[9] = np.NPY_CDOUBLE
|
||||
|
||||
# types to be used for all of the both-type translation
|
||||
# coefficient retrieval ufuncs called like
|
||||
# errval = func(m, n, mu, nu, r, theta, phi, r_ge_d, J, &A, &B)
|
||||
# currently supported signatures: (lllldddbl_DD)
|
||||
cdef char ufunc__get_both_coeff_types[11]
|
||||
ufunc__get_both_coeff_types[0] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[1] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[2] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[3] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[4] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[5] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[6] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[7] = np.NPY_BOOL
|
||||
ufunc__get_both_coeff_types[8] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[9] = np.NPY_CDOUBLE
|
||||
ufunc__get_both_coeff_types[10] = np.NPY_CDOUBLE
|
||||
|
||||
|
||||
trans_A_taylor_elementwise_funcs[0] = <void*> qpms_trans_single_A_Taylor_ext
|
||||
trans_B_taylor_elementwise_funcs[0] = <void*> qpms_trans_single_B_Taylor_ext
|
||||
|
||||
trans_A_Taylor = np.PyUFunc_FromFuncAndData(
|
||||
trans_X_taylor_loop_func, # func
|
||||
trans_A_taylor_elementwise_funcs, #data
|
||||
ufunc__get_either_trans_coeff_types, # types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"trans_A_Taylor", # name
|
||||
"""
|
||||
TODO computes the E-E or M-M translation coefficient in Taylor's normalisation
|
||||
""", # doc
|
||||
0 # unused, for backward compatibility of numpy c api
|
||||
)
|
||||
|
||||
trans_B_Taylor = np.PyUFunc_FromFuncAndData(
|
||||
trans_X_taylor_loop_func,
|
||||
trans_B_taylor_elementwise_funcs,
|
||||
ufunc__get_either_trans_coeff_types,
|
||||
1, # number of supported input types
|
||||
9, # number of input args
|
||||
1, # number of output args
|
||||
0, # identity element, unused
|
||||
"trans_B_Taylor",
|
||||
"""
|
||||
TODO computes the E-E or M-M translation coefficient in Taylor's normalisation
|
||||
""",
|
||||
0 # unused
|
||||
)
|
||||
|
||||
# ---------------------------------------------
|
||||
# Wrapper for the qpms_trans_calculator "class"
|
||||
# ---------------------------------------------
|
||||
ctypedef struct trans_calculator_get_X_data_t:
|
||||
qpms_trans_calculator* c
|
||||
void* cmethod
|
||||
|
||||
cdef void trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef cdouble (*func)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef cdouble ov0
|
||||
for i in range(n): # iterating over dimensions
|
||||
#ov0 = func(
|
||||
ov0 = (<double complex(*)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
(<cdouble *>op0)[0] = <cdouble>ov0
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
cdef void trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
# E stands for error value (int), C for qpms_trans_calculator*
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef char *op1 = args[10]
|
||||
cdef cdouble ov0
|
||||
cdef int errval
|
||||
for i in range(n): # iterating over dimensions
|
||||
#errval = func(
|
||||
errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<cdouble *> op0,
|
||||
<cdouble *> op1,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
op1 += steps[10]
|
||||
# TODO if (errval != 0): ...
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.wraparound(False)
|
||||
cdef void trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
# E stands for error value (int), C for qpms_trans_calculator*
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
|
||||
cdef char *ip0
|
||||
cdef char *ip1
|
||||
cdef char *ip2
|
||||
cdef char *ip3
|
||||
cdef char *ip4
|
||||
cdef char *ip5
|
||||
cdef char *ip6
|
||||
cdef char *ip7
|
||||
cdef char *ip8
|
||||
cdef char *op0
|
||||
cdef char *op1
|
||||
cdef int errval
|
||||
for i in prange(n): # iterating over dimensions
|
||||
ip0 = args[0] + i * steps[0]
|
||||
ip1 = args[1] + i * steps[1]
|
||||
ip2 = args[2] + i * steps[2]
|
||||
ip3 = args[3] + i * steps[3]
|
||||
ip4 = args[4] + i * steps[4]
|
||||
ip5 = args[5] + i * steps[5]
|
||||
ip6 = args[6] + i * steps[6]
|
||||
ip7 = args[7] + i * steps[7]
|
||||
ip8 = args[8] + i * steps[8]
|
||||
op0 = args[9] + i * steps[9]
|
||||
op1 = args[10] + i * steps[10]
|
||||
#errval = func(
|
||||
errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<cdouble *> op0,
|
||||
<cdouble *> op1,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
# TODO if (errval != 0): ...
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_calculator_get_X_loop_funcs[1]
|
||||
trans_calculator_get_X_loop_funcs[0] = trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_calculator_get_AB_loop_funcs[1]
|
||||
#trans_calculator_get_AB_loop_funcs[0] = trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
|
||||
trans_calculator_get_AB_loop_funcs[0] = trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
|
||||
cdef void *trans_calculator_get_AB_elementwise_funcs[1]
|
||||
trans_calculator_get_AB_elementwise_funcs[0] = <void *>qpms_trans_calculator_get_AB_p_ext
|
||||
|
||||
'''
|
||||
cdef extern from "numpy/ndarrayobject.h":
|
||||
struct PyArrayInterface:
|
||||
int itemsize
|
||||
np.npy_uintp *shape
|
||||
np.npy_uintp *strides
|
||||
void *data
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
cdef class trans_calculator:
|
||||
cdef qpms_trans_calculator* c
|
||||
cdef trans_calculator_get_X_data_t get_A_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_A_data_p[1]
|
||||
|
||||
cdef trans_calculator_get_X_data_t get_B_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_B_data_p[1]
|
||||
|
||||
cdef trans_calculator_get_X_data_t get_AB_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_AB_data_p[1]
|
||||
cdef public: # TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
# have to be cdef public in order that __init__ can set these attributes
|
||||
object get_A, get_B, get_AB
|
||||
|
||||
def __cinit__(self, int lMax, int normalization = 1):
|
||||
if (lMax <= 0):
|
||||
raise ValueError('lMax has to be greater than 0.')
|
||||
self.c = qpms_trans_calculator_init(lMax, normalization)
|
||||
if self.c is NULL:
|
||||
raise MemoryError
|
||||
|
||||
def __init__(self, int lMax, int normalization = 1):
|
||||
if self.c is NULL:
|
||||
raise MemoryError()
|
||||
self.get_A_data[0].c = self.c
|
||||
self.get_A_data[0].cmethod = <void *>qpms_trans_calculator_get_A_ext
|
||||
self.get_A_data_p[0] = &(self.get_A_data[0])
|
||||
self.get_A = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_X_loop_funcs, # func
|
||||
<void **>self.get_A_data_p, #data
|
||||
ufunc__get_either_trans_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_A", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
self.get_B_data[0].c = self.c
|
||||
self.get_B_data[0].cmethod = <void *>qpms_trans_calculator_get_B_ext
|
||||
self.get_B_data_p[0] = &(self.get_B_data[0])
|
||||
self.get_B = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_X_loop_funcs, # func
|
||||
<void **>self.get_B_data_p, #data
|
||||
ufunc__get_either_trans_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_B", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
self.get_AB_data[0].c = self.c
|
||||
self.get_AB_data[0].cmethod = <void *>qpms_trans_calculator_get_AB_p_ext
|
||||
self.get_AB_data_p[0] = &(self.get_AB_data[0])
|
||||
self.get_AB = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_AB_loop_funcs, # func
|
||||
<void **>self.get_AB_data_p, #data
|
||||
ufunc__get_both_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
2, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_AB", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
def __dealloc__(self):
|
||||
if self.c is not NULL:
|
||||
qpms_trans_calculator_free(self.c)
|
||||
# TODO Reference counts to get_A, get_B, get_AB?
|
||||
|
||||
def lMax(self):
|
||||
return self.c[0].lMax
|
||||
|
||||
def nelem(self):
|
||||
return self.c[0].nelem
|
||||
|
||||
def get_AB_arrays(self, r, theta, phi, r_ge_d, int J,
|
||||
destaxis=None, srcaxis=None, expand=True):
|
||||
"""
|
||||
Returns arrays of translation coefficients, inserting two new nelem-sized axes
|
||||
(corresponding to the destination and source axes of the translation matrix,
|
||||
respectively).
|
||||
|
||||
By default (expand==True), it inserts the new axes. or it can be provided with
|
||||
the resulting shape (with the corresponding axes dimensions equal to one).
|
||||
The provided axes positions are for the resulting array.
|
||||
|
||||
If none axis positions are provided, destaxis and srcaxis will be the second-to-last
|
||||
and last, respectively.
|
||||
"""
|
||||
# TODO CHECK (and try to cast) INPUT ARRAY TYPES (now is done)
|
||||
# BIG FIXME: make skalars valid arguments, now r, theta, phi, r_ge_d have to be ndarrays
|
||||
cdef:
|
||||
int daxis, saxis, smallaxis, bigaxis, resnd, i, j, d, ax, errval
|
||||
np.npy_intp sstride, dstride, longi
|
||||
int *local_indices
|
||||
char *r_p
|
||||
char *theta_p
|
||||
char *phi_p
|
||||
char *r_ge_d_p
|
||||
char *a_p
|
||||
char *b_p
|
||||
# Process the array shapes
|
||||
baseshape = np.broadcast(r,theta,phi,r_ge_d).shape # nope, does not work as needed
|
||||
'''
|
||||
cdef int r_orignd = r.ndim if hasattr(r, "ndim") else 0
|
||||
cdef int theta_orignd = theta.ndim if hasattr(theta, "ndim") else 0
|
||||
cdef int phi_orignd = phi.ndim if hasattr(phi, "ndim") else 0
|
||||
cdef int r_ge_d_orignd = r_ge_d.ndim if hasattr(r_ge_d, "__len__") else 0
|
||||
cdef int basend = max(r_orignd, theta_orignd, phi_orignd, r_ge_d_orignd)
|
||||
baseshape = list()
|
||||
for d in range(basend):
|
||||
baseshape.append(max(
|
||||
r.shape[d+r_orignd-basend] if d+r_orignd-basend >= 0 else 1,
|
||||
theta.shape[d+theta_orignd-basend] if d+theta_orignd-basend >= 0 else 1,
|
||||
phi.shape[d+phi_orignd-basend] if d+phi_orignd-basend >= 0 else 1,
|
||||
r_ge_d.shape[d+r_ge_d_orignd-basend] if d+r_ge_d_orignd-basend >= 0 else 1,
|
||||
))
|
||||
baseshape = tuple(baseshape)
|
||||
'''
|
||||
if not expand:
|
||||
resnd = len(baseshape)
|
||||
if resnd < 2:
|
||||
raise ValueError('Translation matrix arrays must have at least 2 dimensions!')
|
||||
daxis = (resnd-2) if destaxis is None else destaxis
|
||||
saxis = (resnd-1) if srcaxis is None else srcaxis
|
||||
if daxis < 0:
|
||||
daxis = resnd + daxis
|
||||
if saxis < 0:
|
||||
saxis = resnd + saxis
|
||||
if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
|
||||
raise ValueError('invalid axes provided (destaxis = %d, srcaxis = %d, # of axes: %d'
|
||||
% (daxis, saxis, resnd))
|
||||
if baseshape[daxis] != 1 or baseshape[saxis] != 1:
|
||||
raise ValueError('dimension mismatch (input argument dimensions have to be 1 both at'
|
||||
'destaxis (==%d) and srcaxis (==%d) but are %d and %d' %
|
||||
(daxis, saxis, baseshape[daxis], baseshape[saxis]))
|
||||
resultshape = list(baseshape)
|
||||
else:
|
||||
resnd = len(baseshape)+2
|
||||
daxis = (resnd-2) if destaxis is None else destaxis
|
||||
saxis = (resnd-1) if srcaxis is None else srcaxis
|
||||
if daxis < 0:
|
||||
daxis = resnd + daxis
|
||||
if saxis < 0:
|
||||
saxis = resnd + saxis
|
||||
if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
|
||||
raise ValueError('invalid axes provided') # TODO better error formulation
|
||||
resultshape = list(baseshape)
|
||||
if daxis > saxis:
|
||||
smallaxis = saxis
|
||||
bigaxis = daxis
|
||||
else:
|
||||
smallaxis = daxis
|
||||
bigaxis = saxis
|
||||
resultshape.insert(smallaxis,1)
|
||||
resultshape.insert(bigaxis,1)
|
||||
r = np.expand_dims(np.expand_dims(r.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
theta = np.expand_dims(np.expand_dims(theta.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
phi = np.expand_dims(np.expand_dims(phi.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
r_ge_d = np.expand_dims(np.expand_dims(r_ge_d.astype(np.bool_, copy=False), smallaxis), bigaxis)
|
||||
|
||||
resultshape[daxis] = self.c[0].nelem
|
||||
resultshape[saxis] = self.c[0].nelem
|
||||
cdef np.ndarray r_c = np.broadcast_to(r,resultshape)
|
||||
cdef np.ndarray theta_c = np.broadcast_to(theta,resultshape)
|
||||
cdef np.ndarray phi_c = np.broadcast_to(phi,resultshape)
|
||||
cdef np.ndarray r_ge_d_c = np.broadcast_to(r_ge_d, resultshape)
|
||||
cdef np.ndarray a = np.empty(resultshape, dtype=complex)
|
||||
cdef np.ndarray b = np.empty(resultshape, dtype=complex)
|
||||
dstride = a.strides[daxis]
|
||||
sstride = a.strides[saxis]
|
||||
with nogil:
|
||||
errval = qpms_cython_trans_calculator_get_AB_arrays_loop(
|
||||
self.c, J, resnd,
|
||||
daxis, saxis,
|
||||
a.data, a.shape, a.strides,
|
||||
b.data, b.shape, b.strides,
|
||||
r_c.data, r_c.shape, r_c.strides,
|
||||
theta_c.data, theta_c.shape, theta_c.strides,
|
||||
phi_c.data, phi_c.shape, phi_c.strides,
|
||||
r_ge_d_c.data, r_ge_d_c.shape, r_ge_d_c.strides
|
||||
)
|
||||
return a, b
|
||||
|
||||
def get_trans_array_bspec_sph(self, BaseSpec destspec, BaseSpec srcspec,
|
||||
kdlj, qpms_bessel_t J = QPMS_HANKEL_PLUS):
|
||||
kdlj = np.array(kdlj)
|
||||
if kdlj.shape != (3,):
|
||||
raise ValueError("Array of shape (3,) with spherical coordinates of the translation expected")
|
||||
cdef size_t destn = len(destspec)
|
||||
cdef size_t srcn = len(srcspec)
|
||||
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
||||
(destn, srcn), dtype=complex, order='C')
|
||||
cdef cdouble[:,::1] target_view = target
|
||||
cdef sph_t kdlj_sph
|
||||
kdlj_sph.r = kdlj[0]
|
||||
kdlj_sph.theta = kdlj[1]
|
||||
kdlj_sph.phi = kdlj[2]
|
||||
qpms_trans_calculator_get_trans_array(self.c, &target_view[0][0],
|
||||
destspec.rawpointer(), srcn, srcspec.rawpointer(), 1,
|
||||
kdlj_sph, False, J)
|
||||
return target
|
||||
|
||||
def get_trans_array_bspec_c3pos(self, BaseSpec destspec, BaseSpec srcspec,
|
||||
double k, destpos, srcpos, qpms_bessel_t J = QPMS_HANKEL_PLUS):
|
||||
destpos = np.array(destpos)
|
||||
srcpos = np.array(srcpos)
|
||||
if destpos.shape != (3,) or srcpos.shape != (3,):
|
||||
raise ValueError("Array of shape (3,) with cartesian coordinates of the particle position expected")
|
||||
cdef size_t destn = len(destspec)
|
||||
cdef size_t srcn = len(srcspec)
|
||||
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
||||
(destn, srcn), dtype=complex, order='C')
|
||||
cdef cdouble[:,::1] target_view = target
|
||||
cdef cart3_t srcp, destp
|
||||
srcp.x = srcpos[0]
|
||||
srcp.y = srcpos[1]
|
||||
srcp.z = srcpos[2]
|
||||
destp.x = destpos[0]
|
||||
destp.y = destpos[1]
|
||||
destp.z = destpos[2]
|
||||
qpms_trans_calculator_get_trans_array_lc3p(self.c, &target_view[0][0],
|
||||
destspec.rawpointer(), srcn, srcspec.rawpointer(), 1, k,
|
||||
destp, srcp, J)
|
||||
return target
|
||||
|
||||
|
||||
# TODO make possible to access the attributes (to show normalization etc)
|
||||
|
|
@ -170,7 +170,7 @@ def generate_trianglepoints_hexcomplement(maxlayer, v3d = True, circular = True,
|
|||
|
||||
|
||||
from .cycommon import get_mn_y
|
||||
from .qpms_c import trans_calculator
|
||||
from .cytranslations import trans_calculator
|
||||
from .qpms_p import cart2sph
|
||||
|
||||
def hexlattice_precalc_AB_save(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
|
||||
|
|
588
qpms/qpms_c.pyx
588
qpms/qpms_c.pyx
|
@ -9,605 +9,19 @@ to make them available in Python.
|
|||
|
||||
import numpy as np
|
||||
import cmath
|
||||
#from qpms_cdefs cimport *
|
||||
from qpms_cdefs cimport *
|
||||
from cyquaternions cimport *
|
||||
#from cyquaternions import *
|
||||
from cybspec cimport *
|
||||
#from cybspec import *
|
||||
from cycommon import *
|
||||
cimport cython
|
||||
from cython.parallel cimport parallel, prange
|
||||
import enum
|
||||
import warnings
|
||||
import os
|
||||
|
||||
cdef int q_max(int m, int n, int mu, int nu):
|
||||
return min(n,nu,(n+nu-abs(m+mu)//2))
|
||||
|
||||
"""
|
||||
Now we generate our own universal functions to be used with numpy.
|
||||
|
||||
Good way to see how this is done is to look at scipy/scipy/special/generate_ufuncs.py
|
||||
and scipy/scipy/special/generate_ufuncs.py
|
||||
|
||||
In simple words, it works like this:
|
||||
- Let's have a single element function. This can be function which returns or a "subroutine".
|
||||
- Then we need a loop function; this is a wrapper that gets bunch of pointers from numpy and
|
||||
has to properly call the single element function.
|
||||
- From those two, we build a python object using PyUFunc_FromFuncAndData.
|
||||
* If the ufunc is supposed to work on different kinds of input/output types,
|
||||
then a pair of single-element and loop functions is o be provided for
|
||||
each combination of types. However, the single-element function can be reused if
|
||||
the corresponding loop functions do the proper casting.
|
||||
"""
|
||||
|
||||
## as in scipy/special/_ufuncs_cxx.pyx
|
||||
##-------------------------------------
|
||||
#cdef extern from "numpy/ufuncobject.h":
|
||||
# int PyUFunc_getfperr() nogil
|
||||
#
|
||||
#cdef public int wrap_PyUFunc_getfperr() nogil:
|
||||
# """
|
||||
# Call PyUFunc_getfperr in a context where PyUFunc_API array is initialized;
|
||||
#
|
||||
# """
|
||||
# return PyUFunc_getfperr()
|
||||
#
|
||||
#cimport sf_error
|
||||
#-------------------------------------
|
||||
|
||||
|
||||
|
||||
cdef void loop_D_iiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<void**>data)#[0]
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef cdouble ov0
|
||||
for i in range(n): # iterating over dimensions
|
||||
ov0 = (<double complex(*)(int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
(<cdouble *>op0)[0] = <cdouble>ov0
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
|
||||
|
||||
# Module initialisation
|
||||
# ---------------------
|
||||
|
||||
np.import_array() # not sure whether this is really needed
|
||||
np.import_ufunc()
|
||||
|
||||
# Arrays passed to PyUFunc_FromFuncAndData()
|
||||
# ------------------------------------------
|
||||
|
||||
# BTW, aren't there anonymous arrays in cython?
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_X_taylor_loop_func[1]
|
||||
cdef void *trans_A_taylor_elementwise_funcs[1]
|
||||
cdef void *trans_B_taylor_elementwise_funcs[1]
|
||||
|
||||
trans_X_taylor_loop_func[0] = loop_D_iiiidddii_As_D_lllldddbl
|
||||
|
||||
# types to be used for all of the single-type translation
|
||||
# coefficient retrieval ufuncs called like
|
||||
# coeff = func(m, n, mu, nu, r, theta, phi, r_ge_d, J)
|
||||
# currently supported signatures: (D_lllldddbl)
|
||||
cdef char ufunc__get_either_trans_coeff_types[10]
|
||||
ufunc__get_either_trans_coeff_types[0] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[1] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[2] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[3] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[4] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[5] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[6] = np.NPY_DOUBLE
|
||||
ufunc__get_either_trans_coeff_types[7] = np.NPY_BOOL
|
||||
ufunc__get_either_trans_coeff_types[8] = np.NPY_LONG
|
||||
ufunc__get_either_trans_coeff_types[9] = np.NPY_CDOUBLE
|
||||
|
||||
# types to be used for all of the both-type translation
|
||||
# coefficient retrieval ufuncs called like
|
||||
# errval = func(m, n, mu, nu, r, theta, phi, r_ge_d, J, &A, &B)
|
||||
# currently supported signatures: (lllldddbl_DD)
|
||||
cdef char ufunc__get_both_coeff_types[11]
|
||||
ufunc__get_both_coeff_types[0] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[1] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[2] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[3] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[4] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[5] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[6] = np.NPY_DOUBLE
|
||||
ufunc__get_both_coeff_types[7] = np.NPY_BOOL
|
||||
ufunc__get_both_coeff_types[8] = np.NPY_LONG
|
||||
ufunc__get_both_coeff_types[9] = np.NPY_CDOUBLE
|
||||
ufunc__get_both_coeff_types[10] = np.NPY_CDOUBLE
|
||||
|
||||
|
||||
trans_A_taylor_elementwise_funcs[0] = <void*> qpms_trans_single_A_Taylor_ext
|
||||
trans_B_taylor_elementwise_funcs[0] = <void*> qpms_trans_single_B_Taylor_ext
|
||||
|
||||
trans_A_Taylor = np.PyUFunc_FromFuncAndData(
|
||||
trans_X_taylor_loop_func, # func
|
||||
trans_A_taylor_elementwise_funcs, #data
|
||||
ufunc__get_either_trans_coeff_types, # types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"trans_A_Taylor", # name
|
||||
"""
|
||||
TODO computes the E-E or M-M translation coefficient in Taylor's normalisation
|
||||
""", # doc
|
||||
0 # unused, for backward compatibility of numpy c api
|
||||
)
|
||||
|
||||
trans_B_Taylor = np.PyUFunc_FromFuncAndData(
|
||||
trans_X_taylor_loop_func,
|
||||
trans_B_taylor_elementwise_funcs,
|
||||
ufunc__get_either_trans_coeff_types,
|
||||
1, # number of supported input types
|
||||
9, # number of input args
|
||||
1, # number of output args
|
||||
0, # identity element, unused
|
||||
"trans_B_Taylor",
|
||||
"""
|
||||
TODO computes the E-E or M-M translation coefficient in Taylor's normalisation
|
||||
""",
|
||||
0 # unused
|
||||
)
|
||||
|
||||
# ---------------------------------------------
|
||||
# Wrapper for the qpms_trans_calculator "class"
|
||||
# ---------------------------------------------
|
||||
ctypedef struct trans_calculator_get_X_data_t:
|
||||
qpms_trans_calculator* c
|
||||
void* cmethod
|
||||
|
||||
cdef void trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef cdouble (*func)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef cdouble ov0
|
||||
for i in range(n): # iterating over dimensions
|
||||
#ov0 = func(
|
||||
ov0 = (<double complex(*)(qpms_trans_calculator*, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
(<cdouble *>op0)[0] = <cdouble>ov0
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
cdef void trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
# E stands for error value (int), C for qpms_trans_calculator*
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
cdef char *ip0 = args[0]
|
||||
cdef char *ip1 = args[1]
|
||||
cdef char *ip2 = args[2]
|
||||
cdef char *ip3 = args[3]
|
||||
cdef char *ip4 = args[4]
|
||||
cdef char *ip5 = args[5]
|
||||
cdef char *ip6 = args[6]
|
||||
cdef char *ip7 = args[7]
|
||||
cdef char *ip8 = args[8]
|
||||
cdef char *op0 = args[9]
|
||||
cdef char *op1 = args[10]
|
||||
cdef cdouble ov0
|
||||
cdef int errval
|
||||
for i in range(n): # iterating over dimensions
|
||||
#errval = func(
|
||||
errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<cdouble *> op0,
|
||||
<cdouble *> op1,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
ip0 += steps[0]
|
||||
ip1 += steps[1]
|
||||
ip2 += steps[2]
|
||||
ip3 += steps[3]
|
||||
ip4 += steps[4]
|
||||
ip5 += steps[5]
|
||||
ip6 += steps[6]
|
||||
ip7 += steps[7]
|
||||
ip8 += steps[8]
|
||||
op0 += steps[9]
|
||||
op1 += steps[10]
|
||||
# TODO if (errval != 0): ...
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.wraparound(False)
|
||||
cdef void trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) nogil:
|
||||
# E stands for error value (int), C for qpms_trans_calculator*
|
||||
cdef np.npy_intp i, n = dims[0]
|
||||
cdef void *func = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
#cdef complex double (*func)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil = (<trans_calculator_get_X_data_t*>data)[0].cmethod
|
||||
cdef qpms_trans_calculator* c = (<trans_calculator_get_X_data_t*>data)[0].c
|
||||
#cdef char *func_name= <char*>(<void**>data)[1] # i am not using this, nor have I saved func_name to data
|
||||
|
||||
cdef char *ip0
|
||||
cdef char *ip1
|
||||
cdef char *ip2
|
||||
cdef char *ip3
|
||||
cdef char *ip4
|
||||
cdef char *ip5
|
||||
cdef char *ip6
|
||||
cdef char *ip7
|
||||
cdef char *ip8
|
||||
cdef char *op0
|
||||
cdef char *op1
|
||||
cdef int errval
|
||||
for i in prange(n): # iterating over dimensions
|
||||
ip0 = args[0] + i * steps[0]
|
||||
ip1 = args[1] + i * steps[1]
|
||||
ip2 = args[2] + i * steps[2]
|
||||
ip3 = args[3] + i * steps[3]
|
||||
ip4 = args[4] + i * steps[4]
|
||||
ip5 = args[5] + i * steps[5]
|
||||
ip6 = args[6] + i * steps[6]
|
||||
ip7 = args[7] + i * steps[7]
|
||||
ip8 = args[8] + i * steps[8]
|
||||
op0 = args[9] + i * steps[9]
|
||||
op1 = args[10] + i * steps[10]
|
||||
#errval = func(
|
||||
errval = (<int(*)(qpms_trans_calculator*, double complex *, double complex *, int, int, int, int, double, double, double, int, int) nogil>func)(
|
||||
c,
|
||||
<cdouble *> op0,
|
||||
<cdouble *> op1,
|
||||
<int>(<np.npy_long*>ip0)[0],
|
||||
<int>(<np.npy_long*>ip1)[0],
|
||||
<int>(<np.npy_long*>ip2)[0],
|
||||
<int>(<np.npy_long*>ip3)[0],
|
||||
<double>(<np.npy_double*>ip4)[0],
|
||||
<double>(<np.npy_double*>ip5)[0],
|
||||
<double>(<np.npy_double*>ip6)[0],
|
||||
<int>(<np.npy_bool*>ip7)[0],
|
||||
<int>(<np.npy_long*>ip8)[0],
|
||||
)
|
||||
# TODO if (errval != 0): ...
|
||||
# FIXME ERROR HANDLING!!! requires correct import and different data passed (see scipy's generated ufuncs)
|
||||
# sf_error.check_fpe(func_name)
|
||||
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_calculator_get_X_loop_funcs[1]
|
||||
trans_calculator_get_X_loop_funcs[0] = trans_calculator_loop_D_Ciiiidddii_As_D_lllldddbl
|
||||
|
||||
cdef np.PyUFuncGenericFunction trans_calculator_get_AB_loop_funcs[1]
|
||||
#trans_calculator_get_AB_loop_funcs[0] = trans_calculator_parallel_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
|
||||
trans_calculator_get_AB_loop_funcs[0] = trans_calculator_loop_E_C_DD_iiiidddii_As_lllldddbl_DD
|
||||
cdef void *trans_calculator_get_AB_elementwise_funcs[1]
|
||||
trans_calculator_get_AB_elementwise_funcs[0] = <void *>qpms_trans_calculator_get_AB_p_ext
|
||||
|
||||
'''
|
||||
cdef extern from "numpy/ndarrayobject.h":
|
||||
struct PyArrayInterface:
|
||||
int itemsize
|
||||
np.npy_uintp *shape
|
||||
np.npy_uintp *strides
|
||||
void *data
|
||||
'''
|
||||
|
||||
|
||||
from libc.stdlib cimport malloc, free, calloc, abort
|
||||
|
||||
|
||||
|
||||
cdef class trans_calculator:
|
||||
cdef qpms_trans_calculator* c
|
||||
cdef trans_calculator_get_X_data_t get_A_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_A_data_p[1]
|
||||
|
||||
cdef trans_calculator_get_X_data_t get_B_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_B_data_p[1]
|
||||
|
||||
cdef trans_calculator_get_X_data_t get_AB_data[1]
|
||||
cdef trans_calculator_get_X_data_t* get_AB_data_p[1]
|
||||
cdef public: # TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
# have to be cdef public in order that __init__ can set these attributes
|
||||
object get_A, get_B, get_AB
|
||||
|
||||
def __cinit__(self, int lMax, int normalization = 1):
|
||||
if (lMax <= 0):
|
||||
raise ValueError('lMax has to be greater than 0.')
|
||||
self.c = qpms_trans_calculator_init(lMax, normalization)
|
||||
if self.c is NULL:
|
||||
raise MemoryError
|
||||
|
||||
def __init__(self, int lMax, int normalization = 1):
|
||||
if self.c is NULL:
|
||||
raise MemoryError()
|
||||
self.get_A_data[0].c = self.c
|
||||
self.get_A_data[0].cmethod = <void *>qpms_trans_calculator_get_A_ext
|
||||
self.get_A_data_p[0] = &(self.get_A_data[0])
|
||||
self.get_A = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_X_loop_funcs, # func
|
||||
<void **>self.get_A_data_p, #data
|
||||
ufunc__get_either_trans_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_A", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
self.get_B_data[0].c = self.c
|
||||
self.get_B_data[0].cmethod = <void *>qpms_trans_calculator_get_B_ext
|
||||
self.get_B_data_p[0] = &(self.get_B_data[0])
|
||||
self.get_B = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_X_loop_funcs, # func
|
||||
<void **>self.get_B_data_p, #data
|
||||
ufunc__get_either_trans_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
1, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_B", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
self.get_AB_data[0].c = self.c
|
||||
self.get_AB_data[0].cmethod = <void *>qpms_trans_calculator_get_AB_p_ext
|
||||
self.get_AB_data_p[0] = &(self.get_AB_data[0])
|
||||
self.get_AB = <object>np.PyUFunc_FromFuncAndData(# TODO CHECK FOR CORRECT REFERENCE COUNTING AND LEAKS
|
||||
trans_calculator_get_AB_loop_funcs, # func
|
||||
<void **>self.get_AB_data_p, #data
|
||||
ufunc__get_both_coeff_types, #types
|
||||
1, # ntypes: number of supported input types
|
||||
9, # nin: number of input args
|
||||
2, # nout: number of output args
|
||||
0, # identity element, unused
|
||||
"get_AB", #name
|
||||
"""
|
||||
TODO doc
|
||||
""", # doc
|
||||
0 # unused
|
||||
)
|
||||
def __dealloc__(self):
|
||||
if self.c is not NULL:
|
||||
qpms_trans_calculator_free(self.c)
|
||||
# TODO Reference counts to get_A, get_B, get_AB?
|
||||
|
||||
def lMax(self):
|
||||
return self.c[0].lMax
|
||||
|
||||
def nelem(self):
|
||||
return self.c[0].nelem
|
||||
|
||||
def get_AB_arrays(self, r, theta, phi, r_ge_d, int J,
|
||||
destaxis=None, srcaxis=None, expand=True):
|
||||
"""
|
||||
Returns arrays of translation coefficients, inserting two new nelem-sized axes
|
||||
(corresponding to the destination and source axes of the translation matrix,
|
||||
respectively).
|
||||
|
||||
By default (expand==True), it inserts the new axes. or it can be provided with
|
||||
the resulting shape (with the corresponding axes dimensions equal to one).
|
||||
The provided axes positions are for the resulting array.
|
||||
|
||||
If none axis positions are provided, destaxis and srcaxis will be the second-to-last
|
||||
and last, respectively.
|
||||
"""
|
||||
# TODO CHECK (and try to cast) INPUT ARRAY TYPES (now is done)
|
||||
# BIG FIXME: make skalars valid arguments, now r, theta, phi, r_ge_d have to be ndarrays
|
||||
cdef:
|
||||
int daxis, saxis, smallaxis, bigaxis, resnd, i, j, d, ax, errval
|
||||
np.npy_intp sstride, dstride, longi
|
||||
int *local_indices
|
||||
char *r_p
|
||||
char *theta_p
|
||||
char *phi_p
|
||||
char *r_ge_d_p
|
||||
char *a_p
|
||||
char *b_p
|
||||
# Process the array shapes
|
||||
baseshape = np.broadcast(r,theta,phi,r_ge_d).shape # nope, does not work as needed
|
||||
'''
|
||||
cdef int r_orignd = r.ndim if hasattr(r, "ndim") else 0
|
||||
cdef int theta_orignd = theta.ndim if hasattr(theta, "ndim") else 0
|
||||
cdef int phi_orignd = phi.ndim if hasattr(phi, "ndim") else 0
|
||||
cdef int r_ge_d_orignd = r_ge_d.ndim if hasattr(r_ge_d, "__len__") else 0
|
||||
cdef int basend = max(r_orignd, theta_orignd, phi_orignd, r_ge_d_orignd)
|
||||
baseshape = list()
|
||||
for d in range(basend):
|
||||
baseshape.append(max(
|
||||
r.shape[d+r_orignd-basend] if d+r_orignd-basend >= 0 else 1,
|
||||
theta.shape[d+theta_orignd-basend] if d+theta_orignd-basend >= 0 else 1,
|
||||
phi.shape[d+phi_orignd-basend] if d+phi_orignd-basend >= 0 else 1,
|
||||
r_ge_d.shape[d+r_ge_d_orignd-basend] if d+r_ge_d_orignd-basend >= 0 else 1,
|
||||
))
|
||||
baseshape = tuple(baseshape)
|
||||
'''
|
||||
if not expand:
|
||||
resnd = len(baseshape)
|
||||
if resnd < 2:
|
||||
raise ValueError('Translation matrix arrays must have at least 2 dimensions!')
|
||||
daxis = (resnd-2) if destaxis is None else destaxis
|
||||
saxis = (resnd-1) if srcaxis is None else srcaxis
|
||||
if daxis < 0:
|
||||
daxis = resnd + daxis
|
||||
if saxis < 0:
|
||||
saxis = resnd + saxis
|
||||
if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
|
||||
raise ValueError('invalid axes provided (destaxis = %d, srcaxis = %d, # of axes: %d'
|
||||
% (daxis, saxis, resnd))
|
||||
if baseshape[daxis] != 1 or baseshape[saxis] != 1:
|
||||
raise ValueError('dimension mismatch (input argument dimensions have to be 1 both at'
|
||||
'destaxis (==%d) and srcaxis (==%d) but are %d and %d' %
|
||||
(daxis, saxis, baseshape[daxis], baseshape[saxis]))
|
||||
resultshape = list(baseshape)
|
||||
else:
|
||||
resnd = len(baseshape)+2
|
||||
daxis = (resnd-2) if destaxis is None else destaxis
|
||||
saxis = (resnd-1) if srcaxis is None else srcaxis
|
||||
if daxis < 0:
|
||||
daxis = resnd + daxis
|
||||
if saxis < 0:
|
||||
saxis = resnd + saxis
|
||||
if daxis < 0 or saxis < 0 or daxis >= resnd or saxis >= resnd or daxis == saxis:
|
||||
raise ValueError('invalid axes provided') # TODO better error formulation
|
||||
resultshape = list(baseshape)
|
||||
if daxis > saxis:
|
||||
smallaxis = saxis
|
||||
bigaxis = daxis
|
||||
else:
|
||||
smallaxis = daxis
|
||||
bigaxis = saxis
|
||||
resultshape.insert(smallaxis,1)
|
||||
resultshape.insert(bigaxis,1)
|
||||
r = np.expand_dims(np.expand_dims(r.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
theta = np.expand_dims(np.expand_dims(theta.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
phi = np.expand_dims(np.expand_dims(phi.astype(np.float_, copy=False), smallaxis), bigaxis)
|
||||
r_ge_d = np.expand_dims(np.expand_dims(r_ge_d.astype(np.bool_, copy=False), smallaxis), bigaxis)
|
||||
|
||||
resultshape[daxis] = self.c[0].nelem
|
||||
resultshape[saxis] = self.c[0].nelem
|
||||
cdef np.ndarray r_c = np.broadcast_to(r,resultshape)
|
||||
cdef np.ndarray theta_c = np.broadcast_to(theta,resultshape)
|
||||
cdef np.ndarray phi_c = np.broadcast_to(phi,resultshape)
|
||||
cdef np.ndarray r_ge_d_c = np.broadcast_to(r_ge_d, resultshape)
|
||||
cdef np.ndarray a = np.empty(resultshape, dtype=complex)
|
||||
cdef np.ndarray b = np.empty(resultshape, dtype=complex)
|
||||
dstride = a.strides[daxis]
|
||||
sstride = a.strides[saxis]
|
||||
with nogil:
|
||||
errval = qpms_cython_trans_calculator_get_AB_arrays_loop(
|
||||
self.c, J, resnd,
|
||||
daxis, saxis,
|
||||
a.data, a.shape, a.strides,
|
||||
b.data, b.shape, b.strides,
|
||||
r_c.data, r_c.shape, r_c.strides,
|
||||
theta_c.data, theta_c.shape, theta_c.strides,
|
||||
phi_c.data, phi_c.shape, phi_c.strides,
|
||||
r_ge_d_c.data, r_ge_d_c.shape, r_ge_d_c.strides
|
||||
)
|
||||
return a, b
|
||||
|
||||
def get_trans_array_bspec_sph(self, BaseSpec destspec, BaseSpec srcspec,
|
||||
kdlj, qpms_bessel_t J = QPMS_HANKEL_PLUS):
|
||||
kdlj = np.array(kdlj)
|
||||
if kdlj.shape != (3,):
|
||||
raise ValueError("Array of shape (3,) with spherical coordinates of the translation expected")
|
||||
cdef size_t destn = len(destspec)
|
||||
cdef size_t srcn = len(srcspec)
|
||||
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
||||
(destn, srcn), dtype=complex, order='C')
|
||||
cdef cdouble[:,::1] target_view = target
|
||||
cdef sph_t kdlj_sph
|
||||
kdlj_sph.r = kdlj[0]
|
||||
kdlj_sph.theta = kdlj[1]
|
||||
kdlj_sph.phi = kdlj[2]
|
||||
qpms_trans_calculator_get_trans_array(self.c, &target_view[0][0],
|
||||
destspec.rawpointer(), srcn, srcspec.rawpointer(), 1,
|
||||
kdlj_sph, False, J)
|
||||
return target
|
||||
|
||||
def get_trans_array_bspec_c3pos(self, BaseSpec destspec, BaseSpec srcspec,
|
||||
double k, destpos, srcpos, qpms_bessel_t J = QPMS_HANKEL_PLUS):
|
||||
destpos = np.array(destpos)
|
||||
srcpos = np.array(srcpos)
|
||||
if destpos.shape != (3,) or srcpos.shape != (3,):
|
||||
raise ValueError("Array of shape (3,) with cartesian coordinates of the particle position expected")
|
||||
cdef size_t destn = len(destspec)
|
||||
cdef size_t srcn = len(srcspec)
|
||||
cdef np.ndarray[np.complex_t, ndim=2] target = np.empty(
|
||||
(destn, srcn), dtype=complex, order='C')
|
||||
cdef cdouble[:,::1] target_view = target
|
||||
cdef cart3_t srcp, destp
|
||||
srcp.x = srcpos[0]
|
||||
srcp.y = srcpos[1]
|
||||
srcp.z = srcpos[2]
|
||||
destp.x = destpos[0]
|
||||
destp.y = destpos[1]
|
||||
destp.z = destpos[2]
|
||||
qpms_trans_calculator_get_trans_array_lc3p(self.c, &target_view[0][0],
|
||||
destspec.rawpointer(), srcn, srcspec.rawpointer(), 1, k,
|
||||
destp, srcp, J)
|
||||
return target
|
||||
|
||||
|
||||
# TODO make possible to access the attributes (to show normalization etc)
|
||||
|
||||
|
||||
cdef class MaterialInterpolator:
|
||||
'''
|
||||
Wrapper over the qpms_permittivity_interpolator_t structure.
|
||||
|
|
20
setup.py
20
setup.py
|
@ -84,12 +84,22 @@ libqpms_sources = [
|
|||
|
||||
cycommon = Extension('qpms.cycommon',
|
||||
sources = ['qpms/cycommon.pyx'],
|
||||
extra_link_args=['amos/libamos.a', 'qpms/libqpms.a'],
|
||||
extra_link_args=['qpms/libqpms.a'],
|
||||
libraries=['gsl', 'lapacke', 'blas', 'gslcblas', 'pthread',]
|
||||
)
|
||||
cytranslations = Extension('qpms.cytranslations',
|
||||
sources = ['qpms/cytranslations.pyx',
|
||||
'qpms/translations_python.c',
|
||||
],
|
||||
extra_compile_args=['-std=c99',
|
||||
'-DQPMS_COMPILE_PYTHON_EXTENSIONS', # This is needed to enable it in translations.h
|
||||
],
|
||||
extra_link_args=['qpms/libqpms.a', 'amos/libamos.a'],
|
||||
libraries=['gsl', 'lapacke', 'blas', 'gslcblas', 'pthread',]
|
||||
)
|
||||
cybspec = Extension('qpms.cybspec',
|
||||
sources = ['qpms/cybspec.pyx'],
|
||||
extra_link_args=['amos/libamos.a', 'qpms/libqpms.a'],
|
||||
extra_link_args=['qpms/libqpms.a'],
|
||||
libraries=['gsl', 'lapacke', 'blas', 'gslcblas', 'pthread',]
|
||||
)
|
||||
cyquaternions = Extension('qpms.cyquaternions',
|
||||
|
@ -101,10 +111,6 @@ cyquaternions = Extension('qpms.cyquaternions',
|
|||
qpms_c = Extension('qpms.qpms_c',
|
||||
sources = [
|
||||
'qpms/qpms_c.pyx',
|
||||
'qpms/translations_python.c',
|
||||
],
|
||||
extra_compile_args=['-std=c99',
|
||||
'-DQPMS_COMPILE_PYTHON_EXTENSIONS', # This is needed to enable it in translations.h
|
||||
],
|
||||
libraries=['gsl', 'lapacke', 'blas', 'gslcblas', 'pthread', #'omp'
|
||||
#('amos', dict(sources=amos_sources) ),
|
||||
|
@ -124,7 +130,7 @@ setup(name='qpms',
|
|||
#'quaternion','spherical_functions',
|
||||
'scipy>=0.18.0', 'sympy>=1.2'],
|
||||
#dependency_links=['https://github.com/moble/quaternion/archive/v2.0.tar.gz','https://github.com/moble/spherical_functions/archive/master.zip'],
|
||||
ext_modules=cythonize([qpms_c, cycommon, cyquaternions, cybspec], include_path=['qpms', 'amos'], gdb_debug=True),
|
||||
ext_modules=cythonize([qpms_c, cytranslations, cycommon, cyquaternions, cybspec], include_path=['qpms', 'amos'], gdb_debug=True),
|
||||
cmdclass = {'build_ext': build_ext},
|
||||
zip_safe=False
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue