diff --git a/notes/ewald.lyx b/notes/ewald.lyx index 8d876ff..864ca9f 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -1551,16 +1551,16 @@ One problematic element here is the gamma function \begin_inset Formula $\text{Γ}\left(2-q+n\right)$ \end_inset - which is singular if the arguments are negative integers, i.e. + which is singular if the argument is zero or negative integer, i.e. if -\begin_inset Formula $q-n\ge3$ +\begin_inset Formula $q-n\ge2$ \end_inset -; but at least the necessary minimum of -\begin_inset Formula $q=1,2$ +; which is painful especially because of the case +\begin_inset Formula $q=2,n=0$ \end_inset - would be covered this way. +. The associated Legendre function can be expressed as a finite \begin_inset Quotes eld \end_inset @@ -1636,14 +1636,7 @@ reference "tab:Asymptotical-behaviour-Mathematica" \end_inset , which is unfortunately important. - But if I have not made some mistake, the expression -\begin_inset CommandInset ref -LatexCommand eqref -reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded" - -\end_inset - - is applicable for this case. + \end_layout \begin_layout Standard @@ -2879,7 +2872,7 @@ where the spherical Hankel transform 2) \begin_inset Formula \[ -\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). \] \end_inset @@ -2889,7 +2882,7 @@ Using this convention, the inverse spherical Hankel transform is given by 3) \begin_inset Formula \[ -g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), \] \end_inset @@ -2902,7 +2895,7 @@ so it is not unitary. An unitary convention would look like this: \begin_inset Formula \begin{equation} -\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \end{equation} \end_inset @@ -2956,7 +2949,7 @@ where the Hankel transform of order is defined as \begin_inset Formula \begin{equation} -\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} +\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} \end{equation} \end_inset