WIP
Former-commit-id: 3ab2f0803f9399fe32c41325b9404f8e0b1ba18c
This commit is contained in:
parent
778c4b480a
commit
6092449db4
|
@ -491,21 +491,12 @@ These are compatibility macros for the (...)-old files:
|
|||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
Many-particle
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix simulations in finite and infinite systems of electromagnetic scatterers
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO better title)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
-matrix simulations for nanophotonics: symmetries, scattering and lattice
|
||||
modes
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -521,7 +512,7 @@ Multiple-scattering
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Multiple-scattering
|
||||
Many-particle
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
|
@ -529,6 +520,13 @@ Multiple-scattering
|
|||
modes.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix simulations in finite and infinite systems of electromagnetic scatterers
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -617,8 +615,13 @@ The T-matrix multiple scattering method (TMMSM) can be used to solve the
|
|||
\begin_layout Abstract
|
||||
Here we extend the method to infinite periodic structures using Ewald-type
|
||||
lattice summation, and we exploit the possible symmetries of the structure
|
||||
to further improve its efficiency.
|
||||
to further improve its efficiency, so that systems containing tens of thousands
|
||||
of particles can be studied with relative ease.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -629,6 +632,11 @@ Should I mention also the cross sections formulae in abstract / intro?
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
|
@ -862,7 +870,7 @@ Given up
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
|
|
@ -370,7 +370,13 @@ noprefix "false"
|
|||
|
||||
describes the
|
||||
\emph on
|
||||
lattice modes.
|
||||
lattice modes
|
||||
\emph default
|
||||
, i.e.
|
||||
electromagnetic excitations that can sustain themselves for prolonged time
|
||||
even without external driving
|
||||
\emph on
|
||||
.
|
||||
|
||||
\emph default
|
||||
Non-trivial solutions to
|
||||
|
@ -1700,7 +1706,32 @@ One pecularity of the two-dimensional case is the two-branchedness of the
|
|||
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
appearing in the long-range part.
|
||||
appearing in the long-range part (in the cases
|
||||
\begin_inset Formula $d=1,3$
|
||||
\end_inset
|
||||
|
||||
the function
|
||||
\begin_inset Formula $\gamma\left(z\right)$
|
||||
\end_inset
|
||||
|
||||
appears with even powers, and
|
||||
\begin_inset Formula $\Gamma\left(-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
is meromorphic for integer
|
||||
\begin_inset Formula $j$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "8.2.9"
|
||||
key "NIST:DLMF"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
As a consequence, if we now explicitly label the dependence on the wavenumber,
|
||||
|
||||
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$
|
||||
|
@ -2213,8 +2244,8 @@ noprefix "false"
|
|||
translation operator:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\nonumber \\
|
||||
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves}
|
||||
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm21{m'}\left(0\right),\nonumber \\
|
||||
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -2241,7 +2272,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
and the fact that all the other regular VSWFs except for
|
||||
\begin_inset Formula $\vswfrtlm 21{m'}$
|
||||
\begin_inset Formula $\vswfrtlm21{m'}$
|
||||
\end_inset
|
||||
|
||||
vanish at origin.
|
||||
|
@ -2314,10 +2345,10 @@ status open
|
|||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right),\text{FIXME signs}\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right)
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm21{m'}\left(0\right)\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm21{m'}\left(0\right),\text{FIXME signs}\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm21{m'}\left(0\right)\\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -2335,7 +2366,7 @@ TODO fix signs and exponential phase factors
|
|||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right).
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue