Former-commit-id: 3ab2f0803f9399fe32c41325b9404f8e0b1ba18c
This commit is contained in:
Marek Nečada 2020-06-16 21:53:54 +03:00
parent 778c4b480a
commit 6092449db4
2 changed files with 64 additions and 25 deletions

View File

@ -491,21 +491,12 @@ These are compatibility macros for the (...)-old files:
\end_layout \end_layout
\begin_layout Title \begin_layout Title
Many-particle
\begin_inset Formula $T$ \begin_inset Formula $T$
\end_inset \end_inset
-matrix simulations in finite and infinite systems of electromagnetic scatterers -matrix simulations for nanophotonics: symmetries, scattering and lattice
modes
\begin_inset Marginal
status open
\begin_layout Plain Layout
(TODO better title)
\end_layout
\end_inset
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -521,7 +512,7 @@ Multiple-scattering
\end_layout \end_layout
\begin_layout Itemize \begin_layout Itemize
Multiple-scattering Many-particle
\begin_inset Formula $T$ \begin_inset Formula $T$
\end_inset \end_inset
@ -529,6 +520,13 @@ Multiple-scattering
modes. modes.
\end_layout \end_layout
\begin_layout Itemize
\begin_inset Formula $T$
\end_inset
-matrix simulations in finite and infinite systems of electromagnetic scatterers
\end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -617,8 +615,13 @@ The T-matrix multiple scattering method (TMMSM) can be used to solve the
\begin_layout Abstract \begin_layout Abstract
Here we extend the method to infinite periodic structures using Ewald-type Here we extend the method to infinite periodic structures using Ewald-type
lattice summation, and we exploit the possible symmetries of the structure lattice summation, and we exploit the possible symmetries of the structure
to further improve its efficiency. to further improve its efficiency, so that systems containing tens of thousands
of particles can be studied with relative ease.
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal \begin_inset Marginal
status open status open
@ -629,6 +632,11 @@ Should I mention also the cross sections formulae in abstract / intro?
\end_inset \end_inset
\end_layout
\end_inset
\end_layout \end_layout
\begin_layout Abstract \begin_layout Abstract
@ -862,7 +870,7 @@ Given up
\end_layout \end_layout
\begin_layout Itemize \begin_layout Standard
\begin_inset Note Note \begin_inset Note Note
status open status open

View File

@ -370,7 +370,13 @@ noprefix "false"
describes the describes the
\emph on \emph on
lattice modes. lattice modes
\emph default
, i.e.
electromagnetic excitations that can sustain themselves for prolonged time
even without external driving
\emph on
.
\emph default \emph default
Non-trivial solutions to Non-trivial solutions to
@ -1700,7 +1706,32 @@ One pecularity of the two-dimensional case is the two-branchedness of the
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$ \begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
\end_inset \end_inset
appearing in the long-range part. appearing in the long-range part (in the cases
\begin_inset Formula $d=1,3$
\end_inset
the function
\begin_inset Formula $\gamma\left(z\right)$
\end_inset
appears with even powers, and
\begin_inset Formula $\Gamma\left(-j,z\right)$
\end_inset
is meromorphic for integer
\begin_inset Formula $j$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after "8.2.9"
key "NIST:DLMF"
literal "false"
\end_inset
).
As a consequence, if we now explicitly label the dependence on the wavenumber, As a consequence, if we now explicitly label the dependence on the wavenumber,
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$ \begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$