Redefine qpms_pitau_get to always use the "power" normalisation.

Former-commit-id: 20cd5494f7e3faab4660dde15a00f948fd7391ef
This commit is contained in:
Marek Nečada 2019-07-11 14:22:43 +03:00
parent d3ef942dee
commit 616095890f
2 changed files with 77 additions and 136 deletions

View File

@ -5,14 +5,16 @@
#include <stdlib.h> #include <stdlib.h>
#include "indexing.h" #include "indexing.h"
#include <string.h> #include <string.h>
#include "qpms_error.h"
// Legendre functions also for negative m, see DLMF 14.9.3 // Legendre functions also for negative m, see DLMF 14.9.3
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax, qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase) gsl_sf_legendre_t lnorm, double csphase)
{ {
size_t n = gsl_sf_legendre_array_n(lMax); const size_t n = gsl_sf_legendre_array_n(lMax);
double *legendre_tmp = malloc(n * sizeof(double)); double *legendre_tmp, *legendre_deriv_tmp;
double *legendre_deriv_tmp = malloc(n * sizeof(double)); QPMS_CRASHING_MALLOC(legendre_tmp, n * sizeof(double));
QPMS_CRASHING_MALLOC(legendre_deriv_tmp, n * sizeof(double));
int gsl_errno = gsl_sf_legendre_deriv_array_e( int gsl_errno = gsl_sf_legendre_deriv_array_e(
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp); lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
for (qpms_l_t l = 1; l <= lMax; ++l) for (qpms_l_t l = 1; l <= lMax; ++l)
@ -22,153 +24,69 @@ qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, do
target[y] = legendre_tmp[i]; target[y] = legendre_tmp[i];
target_deriv[y] = legendre_deriv_tmp[i]; target_deriv[y] = legendre_deriv_tmp[i];
} }
switch(lnorm) {
case GSL_SF_LEGENDRE_NONE: // Fill negative m's.
for (qpms_l_t l = 1; l <= lMax; ++l) for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) { for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l); qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m); size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí. // cf. DLMF 14.9.3, but we're normalised.
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1); double factor = ((m%2)?-1:1);
target[y] = factor * legendre_tmp[i]; target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i]; target_deriv[y] = factor * legendre_deriv_tmp[i];
} }
break;
case GSL_SF_LEGENDRE_SCHMIDT:
case GSL_SF_LEGENDRE_SPHARM:
case GSL_SF_LEGENDRE_FULL:
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
break;
default:
abort(); //NI
break;
}
free(legendre_tmp); free(legendre_tmp);
free(legendre_deriv_tmp); free(legendre_deriv_tmp);
return QPMS_SUCCESS; return gsl_errno;
} }
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm, qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
double csphase) double csphase)
{ {
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax)); const qpms_y_t nelem = qpms_lMax2nelem(lMax);
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax)); QPMS_CRASHING_MALLOC(target, nelem * sizeof(double));
QPMS_CRASHING_MALLOC(dtarget, nelem * sizeof(double));
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase); return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
} }
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm) qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, const double csphase)
{ {
const double csphase = qpms_normalisation_t_csphase(norm); QPMS_ENSURE(fabs(csphase) == 1, "The csphase argument must be either 1 or -1, not %g.", csphase);
norm = qpms_normalisation_t_normonly(norm);
qpms_pitau_t res; qpms_pitau_t res;
qpms_y_t nelem = qpms_lMax2nelem(lMax); const qpms_y_t nelem = qpms_lMax2nelem(lMax);
res.pi = malloc(nelem * sizeof(double)); QPMS_CRASHING_MALLOC(res.leg, nelem * sizeof(double));
res.tau = malloc(nelem * sizeof(double)); QPMS_CRASHING_MALLOC(res.pi, nelem * sizeof(double));
QPMS_CRASHING_MALLOC(res.tau, nelem * sizeof(double));
double ct = cos(theta), st = sin(theta); double ct = cos(theta), st = sin(theta);
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2 if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
memset(res.pi, 0, nelem*sizeof(double)); memset(res.pi, 0, nelem * sizeof(double));
memset(res.tau, 0, nelem*sizeof(double)); memset(res.tau, 0, nelem * sizeof(double));
res.leg = calloc(nelem, sizeof(double)); memset(res.leg, 0, nelem * sizeof(double));
switch(norm) { for (qpms_l_t l = 1; l <= lMax; ++l) {
/* FIXME get rid of multiplicating the five lines */ res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
case QPMS_NORMALISATION_NONE: double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
for (qpms_l_t l = 1; l <= lMax; ++l) { int lpar = (l%2)?-1:1;
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.; res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
double p = l*(l+1)/2; res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
const double n = 0.5; res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
int lpar = (l%2)?-1:1; res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
}
break;
#ifdef USE_XU_ANTINORMALISATION // broken
case QPMS_NORMALISATION_XU: // Rather useless except for testing.
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt(0.25*M_1_PI *(2*l+1)/(l*(l+1)));
double p = l*(l+1)/2 /* as in _NONE */
* sqrt(0.25 * M_1_PI * (2*l + 1));
double n = 0.5 /* as in _NONE */
* sqrt(0.25 * M_1_PI * (2*l + 1)) / (l * (l+1));
int lpar = (l%2)?-1:1;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
}
break;
#endif
case QPMS_NORMALISATION_TAYLOR:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
int lpar = (l%2)?-1:1;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
case QPMS_NORMALISATION_POWER:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
int lpar = (l%2)?-1:1;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
default:
abort();
} }
} }
else { // cos(theta) in (-1,1), use normal calculation else { // cos(theta) in (-1,1), use normal calculation
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax)); double *legder;
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax)); QPMS_CRASHING_MALLOC(legder, nelem * sizeof(double));
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax, QPMS_ENSURE_SUCCESS(qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
norm == QPMS_NORMALISATION_NONE ? GSL_SF_LEGENDRE_NONE GSL_SF_LEGENDRE_SPHARM, csphase));
: GSL_SF_LEGENDRE_SPHARM, csphase)) // Multiply by the "power normalisation" factor
abort(); for (qpms_l_t l = 1; l <= lMax; ++l) {
if (norm == QPMS_NORMALISATION_POWER) double prefac = 1./sqrt(l*(l+1));
/* for None (=non-normalized) and Taylor (=sph. harm. normalized) for (qpms_m_t m = -l; m <= l; ++m) {
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e(). res.leg[qpms_mn2y(m,l)] *= prefac;
* However, Kristensson ("power") normalisation differs from Taylor legder[qpms_mn2y(m,l)] *= prefac;
* by 1/sqrt(l*(l+1)) factor.
*/
for (qpms_l_t l = 1; l <= lMax; ++l) {
double prefac = 1./sqrt(l*(l+1));
for (qpms_m_t m = -l; m <= l; ++m) {
res.leg[qpms_mn2y(m,l)] *= prefac;
legder[qpms_mn2y(m,l)] *= prefac;
}
} }
#ifdef USE_XU_ANTINORMALISATION }
else if (norm == QPMS_NORMALISATION_XU)
/* for Xu (anti-normalized), we start from spharm-normalized Legendre functions
* Do not use this normalisation except for testing
*/
// FIXME PROBABLY BROKEN HERE
for (qpms_l_t l = 1; l <= lMax; ++l) {
double prefac = (2*l + 1) / sqrt(4*M_PI / (l*(l+1)));
for (qpms_m_t m = -l; m <= l; ++m) {
double fac = prefac * exp(lgamma(l+m+1) - lgamma(l-m+1));
res.leg[qpms_mn2y(m,l)] *= fac;
legder[qpms_mn2y(m,l)] *= fac;
}
}
#endif
for (qpms_l_t l = 1; l <= lMax; ++l) { for (qpms_l_t l = 1; l <= lMax; ++l) {
for (qpms_m_t m = -l; m <= l; ++m) { for (qpms_m_t m = -l; m <= l; ++m) {
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)]; res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];

View File

@ -52,17 +52,40 @@ double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); /
// array of Legendre and pi, tau auxillary functions (see [1,(37)]) /// Array of Legendre and and auxillary \f$\pi_{lm}, \tau_{lm} \f$ functions.
// This should handle correct evaluation for theta -> 0 and theta -> pi /**
* The leg, pi, tau arrays are indexed using the standard qpms_mn2y() VSWF indexing.
*/
typedef struct { typedef struct {
//qpms_normalisation_t norm; //qpms_normalisation_t norm;
qpms_l_t lMax; qpms_l_t lMax;
//qpms_y_t nelem; //qpms_y_t nelem;
double *leg, *pi, *tau; double *leg, *pi, *tau;
} qpms_pitau_t; } qpms_pitau_t;
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
void qpms_pitau_free(qpms_pitau_t);//NI /// Returns an array of normalised Legendre and and auxillary \f$\pi_{lm}, \tau_{lm} \f$ functions.
void qpms_pitau_pfree(qpms_pitau_t*);//NI /**
* The normalised Legendre function here is defined as
* \f[
* \Fer[norm.]{l}{m} = \csphase^{-1}
* \sqrt{\frac{1}{l(l+1)}\frac{(l-m)!(2l+1)}{4\pi(l+m)!}},
* \f] i.e. obtained using `gsl_sf_legendre_array_e()` with
* `norm = GSL_SF_LEGENDRE_SPHARM` and multiplied by \f$ \sqrt{l(l+1)} \f$.
*
* The auxillary functions are defined as
* \f[
* \pi_{lm}(\cos \theta) = \frac{m}{\sin \theta} \Fer[norm.]{l}{m}(\cos\theta),\\
* \tau_{lm}(\cos \theta) = \frac{\ud}{\ud \theta} \Fer[norm.]{l}{m}(\cos\theta)
* \f]
* with appropriate limit expression used if \f$ \abs{\cos\theta} = 1 \f$.
*
* When done, don't forget to deallocate the memory using qpms_pitau_free().
*
*/
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, double csphase);
/// Frees the dynamically allocated arrays from qpms_pitau_t.
void qpms_pitau_free(qpms_pitau_t);
//void qpms_pitau_pfree(qpms_pitau_t*);//NI
// Associated Legendre polynomial at zero argument (DLMF 14.5.1) DEPRECATED? // Associated Legendre polynomial at zero argument (DLMF 14.5.1) DEPRECATED?
double qpms_legendre0(int m, int n); double qpms_legendre0(int m, int n);