Redefine qpms_pitau_get to always use the "power" normalisation.
Former-commit-id: 20cd5494f7e3faab4660dde15a00f948fd7391ef
This commit is contained in:
parent
d3ef942dee
commit
616095890f
138
qpms/legendre.c
138
qpms/legendre.c
|
@ -5,14 +5,16 @@
|
|||
#include <stdlib.h>
|
||||
#include "indexing.h"
|
||||
#include <string.h>
|
||||
#include "qpms_error.h"
|
||||
|
||||
// Legendre functions also for negative m, see DLMF 14.9.3
|
||||
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
|
||||
gsl_sf_legendre_t lnorm, double csphase)
|
||||
{
|
||||
size_t n = gsl_sf_legendre_array_n(lMax);
|
||||
double *legendre_tmp = malloc(n * sizeof(double));
|
||||
double *legendre_deriv_tmp = malloc(n * sizeof(double));
|
||||
const size_t n = gsl_sf_legendre_array_n(lMax);
|
||||
double *legendre_tmp, *legendre_deriv_tmp;
|
||||
QPMS_CRASHING_MALLOC(legendre_tmp, n * sizeof(double));
|
||||
QPMS_CRASHING_MALLOC(legendre_deriv_tmp, n * sizeof(double));
|
||||
int gsl_errno = gsl_sf_legendre_deriv_array_e(
|
||||
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
|
@ -22,104 +24,46 @@ qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, do
|
|||
target[y] = legendre_tmp[i];
|
||||
target_deriv[y] = legendre_deriv_tmp[i];
|
||||
}
|
||||
switch(lnorm) {
|
||||
case GSL_SF_LEGENDRE_NONE:
|
||||
|
||||
// Fill negative m's.
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1);
|
||||
// cf. DLMF 14.9.3, but we're normalised.
|
||||
double factor = ((m%2)?-1:1);
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
case GSL_SF_LEGENDRE_SCHMIDT:
|
||||
case GSL_SF_LEGENDRE_SPHARM:
|
||||
case GSL_SF_LEGENDRE_FULL:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort(); //NI
|
||||
break;
|
||||
}
|
||||
|
||||
free(legendre_tmp);
|
||||
free(legendre_deriv_tmp);
|
||||
return QPMS_SUCCESS;
|
||||
return gsl_errno;
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
|
||||
double csphase)
|
||||
{
|
||||
|
||||
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
const qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
QPMS_CRASHING_MALLOC(target, nelem * sizeof(double));
|
||||
QPMS_CRASHING_MALLOC(dtarget, nelem * sizeof(double));
|
||||
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
|
||||
}
|
||||
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm)
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, const double csphase)
|
||||
{
|
||||
const double csphase = qpms_normalisation_t_csphase(norm);
|
||||
norm = qpms_normalisation_t_normonly(norm);
|
||||
QPMS_ENSURE(fabs(csphase) == 1, "The csphase argument must be either 1 or -1, not %g.", csphase);
|
||||
qpms_pitau_t res;
|
||||
qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
res.pi = malloc(nelem * sizeof(double));
|
||||
res.tau = malloc(nelem * sizeof(double));
|
||||
const qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
QPMS_CRASHING_MALLOC(res.leg, nelem * sizeof(double));
|
||||
QPMS_CRASHING_MALLOC(res.pi, nelem * sizeof(double));
|
||||
QPMS_CRASHING_MALLOC(res.tau, nelem * sizeof(double));
|
||||
double ct = cos(theta), st = sin(theta);
|
||||
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
|
||||
memset(res.pi, 0, nelem*sizeof(double));
|
||||
memset(res.tau, 0, nelem*sizeof(double));
|
||||
res.leg = calloc(nelem, sizeof(double));
|
||||
switch(norm) {
|
||||
/* FIXME get rid of multiplicating the five lines */
|
||||
case QPMS_NORMALISATION_NONE:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.;
|
||||
double p = l*(l+1)/2;
|
||||
const double n = 0.5;
|
||||
int lpar = (l%2)?-1:1;
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
|
||||
}
|
||||
break;
|
||||
#ifdef USE_XU_ANTINORMALISATION // broken
|
||||
case QPMS_NORMALISATION_XU: // Rather useless except for testing.
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt(0.25*M_1_PI *(2*l+1)/(l*(l+1)));
|
||||
double p = l*(l+1)/2 /* as in _NONE */
|
||||
* sqrt(0.25 * M_1_PI * (2*l + 1));
|
||||
double n = 0.5 /* as in _NONE */
|
||||
* sqrt(0.25 * M_1_PI * (2*l + 1)) / (l * (l+1));
|
||||
int lpar = (l%2)?-1:1;
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
|
||||
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
|
||||
int lpar = (l%2)?-1:1;
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
}
|
||||
break;
|
||||
case QPMS_NORMALISATION_POWER:
|
||||
memset(res.pi, 0, nelem * sizeof(double));
|
||||
memset(res.tau, 0, nelem * sizeof(double));
|
||||
memset(res.leg, 0, nelem * sizeof(double));
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
|
||||
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
|
||||
|
@ -129,24 +73,13 @@ qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t no
|
|||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
else { // cos(theta) in (-1,1), use normal calculation
|
||||
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
|
||||
norm == QPMS_NORMALISATION_NONE ? GSL_SF_LEGENDRE_NONE
|
||||
: GSL_SF_LEGENDRE_SPHARM, csphase))
|
||||
abort();
|
||||
if (norm == QPMS_NORMALISATION_POWER)
|
||||
/* for None (=non-normalized) and Taylor (=sph. harm. normalized)
|
||||
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e().
|
||||
* However, Kristensson ("power") normalisation differs from Taylor
|
||||
* by 1/sqrt(l*(l+1)) factor.
|
||||
*/
|
||||
double *legder;
|
||||
QPMS_CRASHING_MALLOC(legder, nelem * sizeof(double));
|
||||
QPMS_ENSURE_SUCCESS(qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
|
||||
GSL_SF_LEGENDRE_SPHARM, csphase));
|
||||
// Multiply by the "power normalisation" factor
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
double prefac = 1./sqrt(l*(l+1));
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
|
@ -154,21 +87,6 @@ qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t no
|
|||
legder[qpms_mn2y(m,l)] *= prefac;
|
||||
}
|
||||
}
|
||||
#ifdef USE_XU_ANTINORMALISATION
|
||||
else if (norm == QPMS_NORMALISATION_XU)
|
||||
/* for Xu (anti-normalized), we start from spharm-normalized Legendre functions
|
||||
* Do not use this normalisation except for testing
|
||||
*/
|
||||
// FIXME PROBABLY BROKEN HERE
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
double prefac = (2*l + 1) / sqrt(4*M_PI / (l*(l+1)));
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
double fac = prefac * exp(lgamma(l+m+1) - lgamma(l-m+1));
|
||||
res.leg[qpms_mn2y(m,l)] *= fac;
|
||||
legder[qpms_mn2y(m,l)] *= fac;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];
|
||||
|
|
|
@ -52,17 +52,40 @@ double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); /
|
|||
|
||||
|
||||
|
||||
// array of Legendre and pi, tau auxillary functions (see [1,(37)])
|
||||
// This should handle correct evaluation for theta -> 0 and theta -> pi
|
||||
/// Array of Legendre and and auxillary \f$\pi_{lm}, \tau_{lm} \f$ functions.
|
||||
/**
|
||||
* The leg, pi, tau arrays are indexed using the standard qpms_mn2y() VSWF indexing.
|
||||
*/
|
||||
typedef struct {
|
||||
//qpms_normalisation_t norm;
|
||||
qpms_l_t lMax;
|
||||
//qpms_y_t nelem;
|
||||
double *leg, *pi, *tau;
|
||||
} qpms_pitau_t;
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
|
||||
void qpms_pitau_free(qpms_pitau_t);//NI
|
||||
void qpms_pitau_pfree(qpms_pitau_t*);//NI
|
||||
|
||||
/// Returns an array of normalised Legendre and and auxillary \f$\pi_{lm}, \tau_{lm} \f$ functions.
|
||||
/**
|
||||
* The normalised Legendre function here is defined as
|
||||
* \f[
|
||||
* \Fer[norm.]{l}{m} = \csphase^{-1}
|
||||
* \sqrt{\frac{1}{l(l+1)}\frac{(l-m)!(2l+1)}{4\pi(l+m)!}},
|
||||
* \f] i.e. obtained using `gsl_sf_legendre_array_e()` with
|
||||
* `norm = GSL_SF_LEGENDRE_SPHARM` and multiplied by \f$ \sqrt{l(l+1)} \f$.
|
||||
*
|
||||
* The auxillary functions are defined as
|
||||
* \f[
|
||||
* \pi_{lm}(\cos \theta) = \frac{m}{\sin \theta} \Fer[norm.]{l}{m}(\cos\theta),\\
|
||||
* \tau_{lm}(\cos \theta) = \frac{\ud}{\ud \theta} \Fer[norm.]{l}{m}(\cos\theta)
|
||||
* \f]
|
||||
* with appropriate limit expression used if \f$ \abs{\cos\theta} = 1 \f$.
|
||||
*
|
||||
* When done, don't forget to deallocate the memory using qpms_pitau_free().
|
||||
*
|
||||
*/
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, double csphase);
|
||||
/// Frees the dynamically allocated arrays from qpms_pitau_t.
|
||||
void qpms_pitau_free(qpms_pitau_t);
|
||||
//void qpms_pitau_pfree(qpms_pitau_t*);//NI
|
||||
|
||||
// Associated Legendre polynomial at zero argument (DLMF 14.5.1) DEPRECATED?
|
||||
double qpms_legendre0(int m, int n);
|
||||
|
|
Loading…
Reference in New Issue