From 63c87432215ec98ed38e9d7ae8a5e9e1dfe4117c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 23 Jun 2020 11:28:01 +0300 Subject: [PATCH] Supplementary (derivation of 1D and 2D lattice sums) Former-commit-id: bf57f560e9eeb960e92251393dddd33ebbfd1d14 --- lepaper/supplementary.lyx | 1114 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1114 insertions(+) create mode 100644 lepaper/supplementary.lyx diff --git a/lepaper/supplementary.lyx b/lepaper/supplementary.lyx new file mode 100644 index 0000000..ff7db33 --- /dev/null +++ b/lepaper/supplementary.lyx @@ -0,0 +1,1114 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 584 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass amsart +\begin_preamble + +\usepackage{xr} +\externaldocument{arrayscat} +\end_preamble +\options supplementary +\use_default_options true +\begin_modules +theorems-ams +eqs-within-sections +figs-within-sections +\end_modules +\maintain_unincluded_children false +\language finnish +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a4paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 2cm +\rightmargin 2cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Derivation of the 1D and 2D lattice sums for the 3D Helmholtz equation with + general lattice offset +\end_layout + +\begin_layout Author +Marek Nečada +\end_layout + +\begin_layout Section +Periodic Green's functions vs. + VSWF lattice sums +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\ud}{\mathrm{d}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\abs}[1]{\left|#1\right|} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uvec}[1]{\hat{\mathbf{#1}}} +\end_inset + + +\lang english + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1}^{#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ushD}[2]{Y'_{#1}^{#2}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\vsh}{\vect A} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vshD}{\vect{A'}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkc}{\vect y} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcout}{\vect u} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wfkcreg}{\vect v} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcreg}{a} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\wckcout}{f} +\end_inset + + +\end_layout + +\begin_layout Subsection +Some definitions and useful relations +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\mathcal{H}_{l}^{m}\left(\vect d\right)\equiv h_{l}^{+}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right), +\] + +\end_inset + + +\begin_inset Formula +\[ +\mathcal{J}_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right). +\] + +\end_inset + +Dual spherical harmonics and waves: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\int\ush lm\ushD{l'}{m'}\,\ud\Omega=\delta_{l,l'}\delta_{m,m'}, +\] + +\end_inset + + +\begin_inset Formula +\[ +\mathcal{J}'_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ushD lm\left(\uvec d\right). +\] + +\end_inset + +Expansion of a plane wave: +\begin_inset Note Note +status open + +\begin_layout Plain Layout +(CHECKME whether this is really convention-independent, but it seems so) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\kappa\vect r\right)\ush lm\left(\uvec r'\right)=4\pi\sum_{l,m}i^{n}\mathcal{J}{}_{l}^{m}\left(\kappa\vect r\right)\ushD lm\left(\uvec r'\right). +\] + +\end_inset + +This one is also convention independent (similarly for +\begin_inset Formula $\mathcal{H}_{l}^{m}$ +\end_inset + +): +\begin_inset Formula +\[ +\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Helmholtz equation and Green's functions (in 3D) +\end_layout + +\begin_layout Standard +Note that the notation does not follow Linton's (where the wavenumbers are + often implicit) +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\left(\nabla^{2}+\kappa^{2}\right)G^{(\kappa)}\left(\vect x,\vect x_{0}\right)=\delta\left(\vect x-\vect x_{0}\right), +\] + +\end_inset + + +\begin_inset Formula +\begin{align*} +G_{0}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{0}^{(\kappa)}\left(\vect x-\vect x_{0}\right)==-\frac{e^{i\kappa\left|\vect x-\vect x_{0}\right|}}{4\pi\left|\vect x-\vect x_{0}\right|}=-\frac{i\kappa}{4\pi}h_{0}^{+}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)=-\frac{i\kappa}{\sqrt{4\pi}}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right). +\end{align*} + +\end_inset + +In case of wacky conventions, +\begin_inset Formula $G_{0}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Lattice GF +\begin_inset CommandInset citation +LatexCommand cite +after "(2.3)" +key "linton_lattice_2010" +literal "false" + +\end_inset + +: +\begin_inset Formula +\begin{equation} +G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{0}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Subsection +GF expansion and lattice sum definition +\end_layout + +\begin_layout Standard +Let's define +\begin_inset Formula +\[ +\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}, +\] + +\end_inset + +and also its dual version +\begin_inset Formula +\[ +\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Inspired by +\begin_inset CommandInset citation +LatexCommand cite +after "(4.1)" +key "linton_lattice_2010" +literal "false" + +\end_inset + +: assuming that +\begin_inset Formula $\vect s\notin\Lambda$ +\end_inset + +, let's expand the lattice Green's function around +\begin_inset Formula $\vect s$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right), +\] + +\end_inset + +and multiply with a dual SH + integrate +\begin_inset Formula +\begin{align} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\ + & =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right).\label{eq:tau extraction} +\end{align} + +\end_inset + +The expansion coefficients +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + is then typically extracted by taking the limit +\begin_inset Formula $\left|\vect r\right|\to0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +The relation between +\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + and +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + can be obtained e.g. + from the addition theorem for scalar spherical wavefunctions +\begin_inset CommandInset citation +LatexCommand cite +after "(C.3)" +key "linton_lattice_2010" +literal "false" + +\end_inset + +, +\begin_inset Formula +\[ +\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|, +\] + +\end_inset + +where for the zeroth degree and order one has +\begin_inset CommandInset citation +LatexCommand cite +after "(C.3)" +key "linton_lattice_2010" +literal "false" + +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +In a totally convention-independent version probably looks like +\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$ +\end_inset + +, but the +\begin_inset Formula $Y_{0}^{0}$ +\end_inset + + will cancel with the expression for GF anyways, so no harm to the final + result. +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right). +\] + +\end_inset + +From the lattice GF definition +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Lattice GF" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + +\begin_inset Formula +\begin{align*} +G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\ + & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\ + & =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}, +\end{align*} + +\end_inset + +and mutliplying with a dual SH and integrating +\begin_inset Formula +\begin{align*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l'}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\ + & =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right), +\end{align*} + +\end_inset + +and comparing with +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + we have +\begin_inset Formula +\[ +\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right). +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO maybe also define some +\begin_inset Formula $\tau'_{l}^{m}$ +\end_inset + + as expansion coefficients of GF into dual regular SSWFs. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Derivation of the 1D and 2D lattice sum +\end_layout + +\begin_layout Standard +With +\begin_inset CommandInset citation +LatexCommand cite +key "linton_lattice_2010" +literal "false" + +\end_inset + + in hand, the short-range part is rather easy. + Let's get the long-range part. +\end_layout + +\begin_layout Standard +We first need to find the long-range part of the expansion coefficient +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +We take +\begin_inset CommandInset citation +LatexCommand cite +after "(2.24)" +key "linton_lattice_2010" +literal "false" + +\end_inset + + with slightly modified notation +\begin_inset Formula $\left(\vect k_{\vect K}\equiv\vect K+\vect k\right)$ +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t +\] + +\end_inset + +or, evaluated at point +\begin_inset Formula $\vect s+\vect r$ +\end_inset + + instead +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t. +\] + +\end_inset + +The integral can be by substitutions taken into the form +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta +\] + +\end_inset + +Try substitution +\begin_inset Formula $t=\zeta^{2}$ +\end_inset + +: then +\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$ +\end_inset + + ( +\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$ +\end_inset + +) and +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t +\] + +\end_inset + +Try subst. + +\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\lang english +\begin_inset Formula +\[ +G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau +\] + +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Foot +status open + +\begin_layout Plain Layout +[Linton, (2.25)] with slightly modified notation: +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect{\vect k_{\vect K}}}}{2}\right)^{2j-1}\Gamma_{j\vect k_{\vect K}} +\] + +\end_inset + +We want to express an expansion in a shifted point, so let's substitute + +\begin_inset Formula $\vect r\to\vect s+\vect r$ +\end_inset + + +\begin_inset Formula +\[ +G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j-1}\Gamma_{j\vect k_{\vect K}} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_inset + +Let's do the integration to get +\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$ +\end_inset + + +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau. +\] + +\end_inset + +The +\begin_inset Formula $\vect r$ +\end_inset + +-dependent plane wave factor can be also written as +\begin_inset Formula +\begin{align*} +e^{i\vect k_{\vect K}\cdot\vect r} & =e^{i\left|\vect k_{\vect K}\right|\vect r\cdot\uvec{\vect k_{\vect K}}}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect k_{\vect K}\right|\vect r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\\ + & =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right), +\end{align*} + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +or the other way around +\begin_inset Formula +\[ +e^{i\vect k_{\vect K}\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec{\vect k_{\vect K}}\right) +\] + +\end_inset + + +\end_layout + +\end_inset + +so +\begin_inset Formula +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\times\\ +\times\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\int_{\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +We also have +\begin_inset Formula +\begin{align*} +e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\ + & =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{j=0}^{\infty}\frac{1}{j!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{j}, +\end{align*} + +\end_inset + +hence +\begin_inset Formula +\begin{align*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\ + & \quad\times\sum_{j=0}^{\infty}\frac{1}{j!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}}{4}\right)^{j}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}-j}\ud\tau}_{\Delta_{j}^{\left(d_{\Lambda}\right)}}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\Delta_{j}^{\left(d_{\Lambda}\right)}}{j!}\times\\ + & \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}}{4}\right)^{j}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\times\\ + & \quad\times\left(\frac{\kappa\gamma_{\vect{\vect k_{\vect K}}}}{2}\right)^{2j}\sum_{k=0}^{j}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(j-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k}. +\end{align*} + +\end_inset + +The integral +\begin_inset Formula $\Delta_{j}^{\left(d_{\Lambda}\right)}$ +\end_inset + + is (for the 2D case) equivalent to that in +\begin_inset CommandInset citation +LatexCommand cite +key "kambe_theory_1968" +literal "false" + +\end_inset + +. +\end_layout + +\begin_layout Standard +If we label +\begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$ +\end_inset + +, we have +\begin_inset Formula +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\ +\times\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{k=0}^{j}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2j-k}\left(\cos\varphi\right)^{k}, +\end{multline*} + +\end_inset + +and if we label +\begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$ +\end_inset + + +\begin_inset Formula +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\times\\ +\times\sum_{k=0}^{j}\left|\vect r\right|^{2j-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2j-k}\left(\cos\varphi\right)^{k}. +\end{multline*} + +\end_inset + +Now let's put the RHS into +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction formula" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + and try eliminating some sum by taking the limit +\begin_inset Formula $\left|\vect r\right|\to0$ +\end_inset + +. + We have +\begin_inset Formula $j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\sim\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$ +\end_inset + +; the denominator from +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:tau extraction formula" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + behaves like +\begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$ +\end_inset + + The leading terms are hence those with +\begin_inset Formula $\left|\vect r\right|^{l-l'+2j-k}$ +\end_inset + +. + So +\begin_inset Formula +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\ +\times\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{k=0}^{j}\delta_{l'-l,2j-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. +\end{multline*} + +\end_inset + +Let's now focus on rearranging the sums; we have +\begin_inset Formula +\[ +S(l')\equiv\sum_{l=0}^{\infty}\sum_{j=0}^{\infty}\sum_{k=0}^{j}\delta_{l'-l,2j-k}f(l',l,j,k)=\sum_{l=0}^{\infty}\sum_{j=0}^{\infty}\sum_{k=0}^{j}\delta_{l'-l,2j-k}f(l',l,j,2j-l'+l). +\] + +\end_inset + +We have +\begin_inset Formula $0\le k\le j$ +\end_inset + +, hence +\begin_inset Formula $0\le2j-l'+l\le j$ +\end_inset + +, hence +\begin_inset Formula $-2j\le-l'+l\le-j$ +\end_inset + +, hence also +\begin_inset Formula $l'-2j\le l\le l'-j$ +\end_inset + +, which gives the opportunity to swap the +\begin_inset Formula $l,j$ +\end_inset + + sums and the +\begin_inset Formula $l$ +\end_inset + +-sum becomes finite; so also consuming +\begin_inset Formula $\sum_{k=0}^{j}\delta_{l'-l,2j-k}$ +\end_inset + + we get +\begin_inset Formula +\[ +S(l')=\sum_{j=0}^{\infty}\sum_{l=\max(0,l'-2j)}^{l'-j}f(l',l,j,2j-l'+l). +\] + +\end_inset + +Finally, we see that the interval of valid +\begin_inset Formula $l$ +\end_inset + + becomes empty when +\begin_inset Formula $l'-j<0$ +\end_inset + +, i.e. + +\begin_inset Formula $j>l'$ +\end_inset + +; so we get a finite sum +\begin_inset Formula +\[ +S(l')=\sum_{j=0}^{l'}\sum_{l=\max(0,l'-2j)}^{l'-j}f(l',l,j,2j-l'+l). +\] + +\end_inset + +Applying rearrangement, +\begin_inset Formula +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\times\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2j-l'+l}, +\end{multline*} + +\end_inset + +or replacing the angles with their original definition, +\begin_inset Formula +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j}\times\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l}, +\end{multline*} + +\end_inset + +and if we want a +\begin_inset Formula $\sigma_{l'}^{m'}\left(\vect s,\vect k\right)$ +\end_inset + + instead, we reverse the sign of +\begin_inset Formula $\vect s$ +\end_inset + + and replace all spherical harmonics with their dual counterparts: +\begin_inset Formula +\begin{multline*} +\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\times\\ +\times\sum_{m=-l}^{l}\ushD lm\left(\uvec{\vect k_{\vect K}}\right)\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l}, +\end{multline*} + +\end_inset + +and remembering that in the plane wave expansion the +\begin_inset Quotes eld +\end_inset + +duality +\begin_inset Quotes erd +\end_inset + + is interchangeable, +\begin_inset Formula +\begin{multline*} +\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\times\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\underbrace{\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l}}_{\equiv A_{l',l,m',m,j}^{\left(d_{\Lambda}\right)}}. +\end{multline*} + +\end_inset + +The angular integral is easier to evaluate when +\begin_inset Formula $d_{\Lambda}=2$ +\end_inset + +, because then +\begin_inset Formula $\vect r_{\bot}$ +\end_inset + + is parallel (or antiparallel) to +\begin_inset Formula $\vect s_{\bot}$ +\end_inset + +, which gives +\begin_inset Formula +\[ +A_{l',l,m',m,j}^{\left(2\right)}=\left(-\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\cdot\vect s_{\bot}\right|}\right)^{2j-l'+l}\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{2j} +\] + +\end_inset + +and if we set the normal of the lattice correspond to the +\begin_inset Formula $z$ +\end_inset + + axis, the azimuthal part of the integral will become zero unless +\begin_inset Formula $m'=m$ +\end_inset + + for any meaningful spherical harmonics convention, and the polar part for + the only nonzero case has a closed-form expression, see e.g. + +\begin_inset CommandInset citation +LatexCommand cite +after "(A.15)" +key "linton_lattice_2010" +literal "false" + +\end_inset + +, so one arrives at an expression similar to +\begin_inset CommandInset citation +LatexCommand cite +after "(3.15)" +key "kambe_theory_1968" +literal "false" + +\end_inset + + +\lang english + +\begin_inset Formula +\begin{multline} +\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{2}\mathcal{A}}\pi^{3/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\ +\times\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\ush lm\left(\vect k_{\vect K}\right)\sum_{j=0}^{l-\left|m\right|}\left(-1\right)^{j}\gamma_{\vect k_{\vect K}}^{2}{}^{2j+1}\times\\ +\times\Delta_{j}\left(\frac{\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}}{4\eta^{2}},-i\kappa\gamma_{\vect k_{\vect K}}^{2}s_{\perp}\right)\times\\ +\times\sum_{\substack{s\\ +j\le s\le\min\left(2j,l-\left|m\right|\right)\\ +l-j+\left|m\right|\,\mathrm{even} +} +}\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k_{\vect K}\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D-1} +\end{multline} + +\end_inset + +where +\begin_inset Formula $s_{\perp}\equiv\vect s\cdot\uvec z=\vect s_{\bot}\cdot\uvec z$ +\end_inset + +. + If +\begin_inset Formula $d_{\Lambda}=1$ +\end_inset + +, the angular becomes more complicated to evaluate due to the different + behaviour of the +\begin_inset Formula $\vect r_{\bot}\cdot\vect s_{\bot}/\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|$ +\end_inset + + factor. + The choice of coordinates can make most of the terms dissapear: if the + lattice is set parallel to the +\begin_inset Formula $z$ +\end_inset + + axis, +\begin_inset Formula $A_{l',l,m',m,j}^{\left(1\right)}$ +\end_inset + + is zero unless +\begin_inset Formula $m=0$ +\end_inset + +, but one still has +\begin_inset Formula +\[ +A_{l',l,m',0,j}^{\left(1\right)}=\pi\delta_{m',l'-l-2j}\lambda'_{l0}\lambda_{l'm'}\int_{-1}^{1}\ud x\,P_{l'}^{m'}\left(x\right)P_{l}^{0}\left(x\right)\left(1-x^{2}\right)^{\frac{l'-l}{2}} +\] + +\end_inset + +where +\begin_inset Formula $\lambda_{lm}$ +\end_inset + + are constants depending on the conventions for spherical harmonics. + This does not seem to have such a nice closed-form expression as in the + 2D case, but it can be evaluated e.g. + using the common recurrence relations for associated Legendre polynomials. + Of course when +\begin_inset Formula $\vect s=0$ +\end_inset + +, one gets relatively nice closed expressions, such as those in +\begin_inset CommandInset citation +LatexCommand cite +key "linton_lattice_2010" +literal "false" + +\end_inset + +. +\end_layout + +\begin_layout Standard + +\lang english +\begin_inset CommandInset bibtex +LatexCommand bibtex +btprint "btPrintCited" +bibfiles "Tmatrix" +options "siam" +encoding "default" + +\end_inset + + +\end_layout + +\end_body +\end_document