Merge finite-cs.lyx into finite.lyx
Former-commit-id: c42c118767e8fde87df5655946c3489a70627033
This commit is contained in:
parent
3aa4de7e77
commit
64e122b937
|
@ -660,6 +660,27 @@ My implementation.
|
||||||
Maybe put the numerical results separately in the end.
|
Maybe put the numerical results separately in the end.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
TODOs
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Consistent notation of balls.
|
||||||
|
How is the difference between two cocentric balls called?
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Abstract.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Example results.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Concrete comparison with other methods.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset CommandInset include
|
\begin_inset CommandInset include
|
||||||
LatexCommand include
|
LatexCommand include
|
||||||
|
@ -680,6 +701,10 @@ literal "true"
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset CommandInset include
|
\begin_inset CommandInset include
|
||||||
LatexCommand include
|
LatexCommand include
|
||||||
filename "finite-old.lyx"
|
filename "finite-old.lyx"
|
||||||
|
@ -690,12 +715,6 @@ literal "true"
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset CommandInset include
|
|
||||||
LatexCommand include
|
|
||||||
filename "finite-cs.lyx"
|
|
||||||
literal "true"
|
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
@ -713,6 +732,10 @@ literal "true"
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset CommandInset include
|
\begin_inset CommandInset include
|
||||||
LatexCommand include
|
LatexCommand include
|
||||||
filename "infinite-old.lyx"
|
filename "infinite-old.lyx"
|
||||||
|
@ -721,6 +744,11 @@ literal "true"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
|
@ -1,770 +0,0 @@
|
||||||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
|
||||||
\lyxformat 583
|
|
||||||
\begin_document
|
|
||||||
\begin_header
|
|
||||||
\save_transient_properties true
|
|
||||||
\origin unavailable
|
|
||||||
\textclass article
|
|
||||||
\use_default_options true
|
|
||||||
\maintain_unincluded_children false
|
|
||||||
\language english
|
|
||||||
\language_package default
|
|
||||||
\inputencoding utf8
|
|
||||||
\fontencoding auto
|
|
||||||
\font_roman "default" "TeX Gyre Pagella"
|
|
||||||
\font_sans "default" "default"
|
|
||||||
\font_typewriter "default" "default"
|
|
||||||
\font_math "auto" "auto"
|
|
||||||
\font_default_family default
|
|
||||||
\use_non_tex_fonts false
|
|
||||||
\font_sc false
|
|
||||||
\font_roman_osf true
|
|
||||||
\font_sans_osf false
|
|
||||||
\font_typewriter_osf false
|
|
||||||
\font_sf_scale 100 100
|
|
||||||
\font_tt_scale 100 100
|
|
||||||
\use_microtype false
|
|
||||||
\use_dash_ligatures false
|
|
||||||
\graphics default
|
|
||||||
\default_output_format default
|
|
||||||
\output_sync 0
|
|
||||||
\bibtex_command default
|
|
||||||
\index_command default
|
|
||||||
\float_placement class
|
|
||||||
\float_alignment class
|
|
||||||
\paperfontsize default
|
|
||||||
\spacing single
|
|
||||||
\use_hyperref true
|
|
||||||
\pdf_title "Sähköpajan päiväkirja"
|
|
||||||
\pdf_author "Marek Nečada"
|
|
||||||
\pdf_bookmarks true
|
|
||||||
\pdf_bookmarksnumbered false
|
|
||||||
\pdf_bookmarksopen false
|
|
||||||
\pdf_bookmarksopenlevel 1
|
|
||||||
\pdf_breaklinks false
|
|
||||||
\pdf_pdfborder false
|
|
||||||
\pdf_colorlinks false
|
|
||||||
\pdf_backref false
|
|
||||||
\pdf_pdfusetitle true
|
|
||||||
\papersize default
|
|
||||||
\use_geometry false
|
|
||||||
\use_package amsmath 1
|
|
||||||
\use_package amssymb 1
|
|
||||||
\use_package cancel 1
|
|
||||||
\use_package esint 1
|
|
||||||
\use_package mathdots 1
|
|
||||||
\use_package mathtools 1
|
|
||||||
\use_package mhchem 1
|
|
||||||
\use_package stackrel 1
|
|
||||||
\use_package stmaryrd 1
|
|
||||||
\use_package undertilde 1
|
|
||||||
\cite_engine basic
|
|
||||||
\cite_engine_type default
|
|
||||||
\biblio_style plain
|
|
||||||
\use_bibtopic false
|
|
||||||
\use_indices false
|
|
||||||
\paperorientation portrait
|
|
||||||
\suppress_date false
|
|
||||||
\justification true
|
|
||||||
\use_refstyle 1
|
|
||||||
\use_minted 0
|
|
||||||
\use_lineno 0
|
|
||||||
\index Index
|
|
||||||
\shortcut idx
|
|
||||||
\color #008000
|
|
||||||
\end_index
|
|
||||||
\secnumdepth 3
|
|
||||||
\tocdepth 3
|
|
||||||
\paragraph_separation indent
|
|
||||||
\paragraph_indentation default
|
|
||||||
\is_math_indent 0
|
|
||||||
\math_numbering_side default
|
|
||||||
\quotes_style english
|
|
||||||
\dynamic_quotes 0
|
|
||||||
\papercolumns 1
|
|
||||||
\papersides 1
|
|
||||||
\paperpagestyle default
|
|
||||||
\tablestyle default
|
|
||||||
\tracking_changes false
|
|
||||||
\output_changes false
|
|
||||||
\html_math_output 0
|
|
||||||
\html_css_as_file 0
|
|
||||||
\html_be_strict false
|
|
||||||
\end_header
|
|
||||||
|
|
||||||
\begin_body
|
|
||||||
|
|
||||||
\begin_layout Subsection
|
|
||||||
Translation operators
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Let
|
|
||||||
\begin_inset Formula $\vect r_{1},\vect r_{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
be two different origins; a regular VSWF with origin
|
|
||||||
\begin_inset Formula $\vect r_{1}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
can be always expanded in terms of regular VSWFs with origin
|
|
||||||
\begin_inset Formula $\vect r_{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
as follows:
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
where an explicit formula for the (regular)
|
|
||||||
\emph on
|
|
||||||
translation operator
|
|
||||||
\emph default
|
|
||||||
|
|
||||||
\begin_inset Formula $\tropr$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
reads in eq.
|
|
||||||
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:translation operator"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
below.
|
|
||||||
For singular (outgoing) waves, the form of the expansion differs inside
|
|
||||||
and outside the ball
|
|
||||||
\begin_inset Formula $\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}:$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{eqnarray}
|
|
||||||
\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
|
||||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
|
||||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
|
||||||
\end{cases},\label{eq:singular vswf translation}
|
|
||||||
\end{eqnarray}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
where the singular translation operator
|
|
||||||
\begin_inset Formula $\trops$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
has the same form as
|
|
||||||
\begin_inset Formula $\tropr$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
in
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:translation operator"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
except the regular spherical Bessel functions
|
|
||||||
\begin_inset Formula $j_{l}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
are replaced with spherical Hankel functions
|
|
||||||
\begin_inset Formula $h_{l}^{(1)}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
|
|
||||||
\begin_inset Note Note
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
TODO note about expansion exactly on the sphere.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
As MSTMM deals most of the time with the
|
|
||||||
\emph on
|
|
||||||
expansion coefficients
|
|
||||||
\emph default
|
|
||||||
of fields
|
|
||||||
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
in different origins
|
|
||||||
\begin_inset Formula $\vect r_{p}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
rather than with the VSWFs directly, let us write down how
|
|
||||||
\emph on
|
|
||||||
they
|
|
||||||
\emph default
|
|
||||||
transform under translation.
|
|
||||||
Let us assume the field can be in terms of regular waves everywhere, and
|
|
||||||
expand it in two different origins
|
|
||||||
\begin_inset Formula $\vect r_{p},\vect r_{q}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right).
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
Re-expanding the waves around
|
|
||||||
\begin_inset Formula $\vect r_{p}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
in terms of waves around
|
|
||||||
\begin_inset Formula $\vect r_{q}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
using
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:regular vswf translation"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and comparing to the original expansion around
|
|
||||||
\begin_inset Formula $\vect r_{q}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we obtain
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
For the sake of readability, we introduce a shorthand matrix form for
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:regular vswf coefficient translation"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
(note the reversed indices; TODO redefine them in
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:regular vswf translation"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:singular vswf translation"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
? Similarly, if we had only outgoing waves in the original expansion around
|
|
||||||
|
|
||||||
\begin_inset Formula $\vect r_{p}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we would get
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
for the expansion inside the ball
|
|
||||||
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Note Note
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
CHECKME
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
outside.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
In our convention, the regular translation operator can be expressed explicitly
|
|
||||||
as
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
The singular operator
|
|
||||||
\begin_inset Formula $\trops$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
for re-expanding outgoing waves into regular ones has the same form except
|
|
||||||
the regular spherical Bessel functions
|
|
||||||
\begin_inset Formula $j_{l}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
in are replaced with spherical Hankel functions
|
|
||||||
\begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
In our convention, the regular translation operator is unitary,
|
|
||||||
\begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Note Note
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
todo different notation for the complex conjugation without transposition???
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
or in the per-particle matrix notation,
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}\label{eq:regular translation unitarity}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
Note that truncation at finite multipole degree breaks the unitarity,
|
|
||||||
\begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, which has to be taken into consideration when evaluating quantities such
|
|
||||||
as absorption or scattering cross sections.
|
|
||||||
Similarly, the full regular operators can be composed
|
|
||||||
\begin_inset Note Note
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
better wording
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
but truncation breaks this,
|
|
||||||
\begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsection
|
|
||||||
Plane wave expansion coefficients
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsection
|
|
||||||
Multiple-scattering problem
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsection
|
|
||||||
Cross-sections (many scatterers)
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
For a system of many scatterers, Kristensson
|
|
||||||
\begin_inset CommandInset citation
|
|
||||||
LatexCommand cite
|
|
||||||
after "sect. 9.2.2"
|
|
||||||
key "kristensson_scattering_2016"
|
|
||||||
literal "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
derives only the extinction cross section formula.
|
|
||||||
Let us re-derive it together with the many-particle scattering and absorption
|
|
||||||
cross sections.
|
|
||||||
First, let us take a ball circumscribing all the scatterers at once,
|
|
||||||
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\particle$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
Outside
|
|
||||||
\begin_inset Formula $\openball R{\vect r_{\square}}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we can describe the EM fields as if there was only a single scatterer,
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right),
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
where
|
|
||||||
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
are the vectors of VSWF expansion coefficients of the incident and total
|
|
||||||
scattered fields, respectively, at origin
|
|
||||||
\begin_inset Formula $\vect r_{\square}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
In principle, one could evaluate
|
|
||||||
\begin_inset Formula $\outcoeffp{\square}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
using the translation operators (REF!!!) and use the single-scatterer formulae
|
|
||||||
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:extincion CS single"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
–
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:absorption CS single"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
with
|
|
||||||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to obtain the cross sections.
|
|
||||||
However, this is not suitable for numerical evaluation with truncation
|
|
||||||
in multipole degree; hence we need to express them in terms of particle-wise
|
|
||||||
expansions
|
|
||||||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
The original incident field re-expanded around
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
-th particle reads according to
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:regular vswf translation"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
whereas the contributions of fields scattered from each particle expanded
|
|
||||||
around the global origin
|
|
||||||
\begin_inset Formula $\vect r_{\square}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
is, according to
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:singular vswf translation"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
Using the unitarity
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:regular translation unitarity"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and composition
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:regular translation composition"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
properties, one has
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{align}
|
|
||||||
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
|
|
||||||
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
|
|
||||||
\end{align}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
where only the last expression is suitable for numerical evaluation with
|
|
||||||
truncated matrices, because the previous ones contain a translation operator
|
|
||||||
right next to an incident field coefficient vector (see Sec.
|
|
||||||
TODO).
|
|
||||||
Similarly,
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{align}
|
|
||||||
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
|
|
||||||
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
|
|
||||||
\end{align}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
Substituting
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:atf form multiparticle"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:f squared form multiparticle"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
into
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:scattering CS single"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:absorption CS single"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we get the many-particle expressions for extinction, scattering and absorption
|
|
||||||
cross sections suitable for numerical evaluation:
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{eqnarray}
|
|
||||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
|
||||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
|
||||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
|
||||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\
|
|
||||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.\label{eq:absorption CS multi}
|
|
||||||
\end{eqnarray}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
An alternative approach to derive the absorption cross section is via a
|
|
||||||
power transport argument.
|
|
||||||
Note the direct proportionality between absorption cross section
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:absorption CS single"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and net radiated power for single scatterer
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:Power transport"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
In the many-particle setup (with non-lossy background medium, so that only
|
|
||||||
the particles absorb), the total absorbed power is equal to the sum of
|
|
||||||
absorbed powers on each particle,
|
|
||||||
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
Using the power transport formula
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:Power transport"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
particle-wise gives
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{equation}
|
|
||||||
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
which seems different from
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:absorption CS multi"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, but using
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:particle total incident field coefficient a"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we can rewrite it as
|
|
||||||
\begin_inset Formula
|
|
||||||
\begin{align*}
|
|
||||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
|
||||||
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
It is easy to show that all the terms of
|
|
||||||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
containing the singular spherical Bessel functions
|
|
||||||
\begin_inset Formula $y_{l}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
are imaginary,
|
|
||||||
\begin_inset Note Note
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
TODO better formulation
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
so that actually
|
|
||||||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
proving that the expressions in
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:absorption CS multi"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand ref
|
|
||||||
reference "eq:absorption CS multi alternative"
|
|
||||||
plural "false"
|
|
||||||
caps "false"
|
|
||||||
noprefix "false"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
are equal.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_body
|
|
||||||
\end_document
|
|
|
@ -144,7 +144,7 @@ employing point group symmetries and decomposing the problem to decrease
|
||||||
\end_deeper
|
\end_deeper
|
||||||
\end_deeper
|
\end_deeper
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
Motivation
|
Motivation/intro
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -162,9 +162,9 @@ The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
However, the expressions appearing in the re-expansions are fairly complicated,
|
The expressions appearing in the re-expansions are fairly complicated, and
|
||||||
and the implementation of MSTMM is extremely error-prone also due to the
|
the implementation of MSTMM is extremely error-prone also due to the various
|
||||||
various conventions used in the literature.
|
conventions used in the literature.
|
||||||
Therefore although we do not re-derive from scratch the expressions that
|
Therefore although we do not re-derive from scratch the expressions that
|
||||||
can be found elsewhere in literature, we always state them explicitly in
|
can be found elsewhere in literature, we always state them explicitly in
|
||||||
our convention.
|
our convention.
|
||||||
|
@ -326,8 +326,8 @@ vector spherical harmonics
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\vsh 1lm & =\\
|
\vsh 1lm & =TODO\\
|
||||||
\vsh 2lm & =\\
|
\vsh 2lm & =fixme\\
|
||||||
\vsh 3lm & =
|
\vsh 3lm & =
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
@ -452,16 +452,16 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
inside a ball
|
inside a ball
|
||||||
\begin_inset Formula $\openball 0R$
|
\begin_inset Formula $\openball 0{R^{>}}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
with radius
|
with radius
|
||||||
\begin_inset Formula $R$
|
\begin_inset Formula $R^{>}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and center in the origin; however, if the equation is not guaranteed to
|
and center in the origin; however, if the equation is not guaranteed to
|
||||||
hold inside a smaller ball
|
hold inside a smaller ball
|
||||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
around the origin (typically due to presence of a scatterer), one has to
|
around the origin (typically due to presence of a scatterer), one has to
|
||||||
|
@ -470,7 +470,7 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
to have a complete basis of the solutions in the volume
|
to have a complete basis of the solutions in the volume
|
||||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
@ -492,11 +492,11 @@ The single-particle scattering problem at frequency
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
can be posed as follows: Let a scatterer be enclosed inside the ball
|
can be posed as follows: Let a scatterer be enclosed inside the ball
|
||||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and let the whole volume
|
and let the whole volume
|
||||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
be filled with a homogeneous isotropic medium with wave number
|
be filled with a homogeneous isotropic medium with wave number
|
||||||
|
@ -598,6 +598,19 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
The outgoing VSWF expansion coefficients
|
||||||
|
\begin_inset Formula $\outcoefftlm{\tau}lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are related to the induced electric (
|
||||||
|
\begin_inset Formula $\tau=1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) and magnetic (
|
||||||
|
\begin_inset Formula $\tau=2$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) multipole polarisation amplitudes of the scatterer.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -780,7 +793,7 @@ literal "true"
|
||||||
|
|
||||||
.
|
.
|
||||||
Let the field in
|
Let the field in
|
||||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
have expansion as in
|
have expansion as in
|
||||||
|
@ -795,11 +808,11 @@ noprefix "false"
|
||||||
|
|
||||||
.
|
.
|
||||||
Then the net power transported from
|
Then the net power transported from
|
||||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
to
|
to
|
||||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
via by electromagnetic radiation is
|
via by electromagnetic radiation is
|
||||||
|
@ -811,7 +824,7 @@ P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\ri
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
In realistic scattering setups, power is transferred by radiation into
|
In realistic scattering setups, power is transferred by radiation into
|
||||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
\begin_inset Formula $B_{0}\left(R\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and absorbed by the enclosed scatterer, so
|
and absorbed by the enclosed scatterer, so
|
||||||
|
@ -897,7 +910,7 @@ usual
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsubsection
|
||||||
Cross-sections (single-particle)
|
Cross-sections (single-particle)
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
@ -957,8 +970,792 @@ reference "eq:plane wave expansion"
|
||||||
Multiple scattering
|
Multiple scattering
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
If the system consists of multiple scatterers, the EM fields around each
|
||||||
|
one can be expanded in analogous way.
|
||||||
|
Let
|
||||||
|
\begin_inset Formula $\mathcal{P}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
be an index set labeling the scatterers.
|
||||||
|
We enclose each scatterer in a ball
|
||||||
|
\begin_inset Formula $B_{\vect r_{p}}\left(R_{p}\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
such that the balls do not touch,
|
||||||
|
\begin_inset Formula $B_{\vect r_{p}}\left(R_{p}\right)\cap B_{\vect r_{q}}\left(R_{q}\right)=\emptyset;p,q\in\mathcal{P}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO bacha, musejí být uzavřené!
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
so there is a non-empty volume
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
jaksetometuje?
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula $\openball{\vect r_{p}}{R_{p}^{>}}\backslash B_{\vect r_{p}}\left(R_{p}\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
around each one that contains only the background medium without any scatterers.
|
||||||
|
Then the EM field inside each such volume can be expanded in a way similar
|
||||||
|
to
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:E field expansion"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, using VSWFs with origins shifted to the centre of the volume:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align}
|
||||||
|
\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\
|
||||||
|
& \vect r\in\openball{\vect r_{p}}{R_{p}^{>}}\backslash B_{\vect r_{p}}\left(R_{p}\right).\nonumber
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Unlike the single scatterer case, the incident field coefficients
|
||||||
|
\begin_inset Formula $\rcoeffptlm p{\tau}lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
here are not only due to some external driving field that the particle
|
||||||
|
does not influence but they also contain the contributions of fields scattered
|
||||||
|
from
|
||||||
|
\emph on
|
||||||
|
all other scatterers
|
||||||
|
\emph default
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $\rcoeffincp p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
represents the part due to the external driving that the scatterers can
|
||||||
|
not influence, and
|
||||||
|
\begin_inset Formula $\tropsp pq$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is a
|
||||||
|
\emph on
|
||||||
|
translation operator
|
||||||
|
\emph default
|
||||||
|
defined below in Sec.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "subsec:Translation-operator"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, that contains the re-expansion coefficients of the outgoing waves in origin
|
||||||
|
|
||||||
|
\begin_inset Formula $\vect r_{q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
into regular waves in origin
|
||||||
|
\begin_inset Formula $\vect r_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsubsection
|
\begin_layout Subsubsection
|
||||||
Translation operator
|
Translation operator
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "subsec:Translation-operator"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Let
|
||||||
|
\begin_inset Formula $\vect r_{1},\vect r_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
be two different origins; a regular VSWF with origin
|
||||||
|
\begin_inset Formula $\vect r_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be always expanded in terms of regular VSWFs with origin
|
||||||
|
\begin_inset Formula $\vect r_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
as follows:
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where an explicit formula for the (regular)
|
||||||
|
\emph on
|
||||||
|
translation operator
|
||||||
|
\emph default
|
||||||
|
|
||||||
|
\begin_inset Formula $\tropr$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
reads in eq.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:translation operator"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
below.
|
||||||
|
For singular (outgoing) waves, the form of the expansion differs inside
|
||||||
|
and outside the ball
|
||||||
|
\begin_inset Formula $\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}:$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray}
|
||||||
|
\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||||||
|
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||||||
|
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||||||
|
\end{cases},\label{eq:singular vswf translation}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where the singular translation operator
|
||||||
|
\begin_inset Formula $\trops$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
has the same form as
|
||||||
|
\begin_inset Formula $\tropr$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:translation operator"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
except the regular spherical Bessel functions
|
||||||
|
\begin_inset Formula $j_{l}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are replaced with spherical Hankel functions
|
||||||
|
\begin_inset Formula $h_{l}^{(1)}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO note about expansion exactly on the sphere.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
As MSTMM deals most of the time with the
|
||||||
|
\emph on
|
||||||
|
expansion coefficients
|
||||||
|
\emph default
|
||||||
|
of fields
|
||||||
|
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in different origins
|
||||||
|
\begin_inset Formula $\vect r_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
rather than with the VSWFs directly, let us write down how
|
||||||
|
\emph on
|
||||||
|
they
|
||||||
|
\emph default
|
||||||
|
transform under translation.
|
||||||
|
Let us assume the field can be in terms of regular waves everywhere, and
|
||||||
|
expand it in two different origins
|
||||||
|
\begin_inset Formula $\vect r_{p},\vect r_{q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right).
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Re-expanding the waves around
|
||||||
|
\begin_inset Formula $\vect r_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in terms of waves around
|
||||||
|
\begin_inset Formula $\vect r_{q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
using
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:regular vswf translation"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and comparing to the original expansion around
|
||||||
|
\begin_inset Formula $\vect r_{q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we obtain
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
For the sake of readability, we introduce a shorthand matrix form for
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:regular vswf coefficient translation"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(note the reversed indices; TODO redefine them in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:regular vswf translation"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:singular vswf translation"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
? Similarly, if we had only outgoing waves in the original expansion around
|
||||||
|
|
||||||
|
\begin_inset Formula $\vect r_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we would get
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for the expansion inside the ball
|
||||||
|
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
CHECKME
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
outside.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
In our convention, the regular translation operator can be expressed explicitly
|
||||||
|
as
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The singular operator
|
||||||
|
\begin_inset Formula $\trops$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for re-expanding outgoing waves into regular ones has the same form except
|
||||||
|
the regular spherical Bessel functions
|
||||||
|
\begin_inset Formula $j_{l}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in are replaced with spherical Hankel functions
|
||||||
|
\begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
In our convention, the regular translation operator is unitary,
|
||||||
|
\begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
todo different notation for the complex conjugation without transposition???
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
or in the per-particle matrix notation,
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}\label{eq:regular translation unitarity}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Note that truncation at finite multipole degree breaks the unitarity,
|
||||||
|
\begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which has to be taken into consideration when evaluating quantities such
|
||||||
|
as absorption or scattering cross sections.
|
||||||
|
Similarly, the full regular operators can be composed
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
better wording
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
but truncation breaks this,
|
||||||
|
\begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection
|
||||||
|
Cross-sections (many scatterers)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
For a system of many scatterers, Kristensson
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "sect. 9.2.2"
|
||||||
|
key "kristensson_scattering_2016"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
derives only the extinction cross section formula.
|
||||||
|
Let us re-derive it together with the many-particle scattering and absorption
|
||||||
|
cross sections.
|
||||||
|
First, let us take a ball circumscribing all the scatterers at once,
|
||||||
|
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\particle$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Outside
|
||||||
|
\begin_inset Formula $\openball R{\vect r_{\square}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we can describe the EM fields as if there was only a single scatterer,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right),
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are the vectors of VSWF expansion coefficients of the incident and total
|
||||||
|
scattered fields, respectively, at origin
|
||||||
|
\begin_inset Formula $\vect r_{\square}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
In principle, one could evaluate
|
||||||
|
\begin_inset Formula $\outcoeffp{\square}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
using the translation operators (REF!!!) and use the single-scatterer formulae
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:extincion CS single"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
–
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:absorption CS single"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with
|
||||||
|
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
to obtain the cross sections.
|
||||||
|
However, this is not suitable for numerical evaluation with truncation
|
||||||
|
in multipole degree; hence we need to express them in terms of particle-wise
|
||||||
|
expansions
|
||||||
|
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The original incident field re-expanded around
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-th particle reads according to
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:regular vswf translation"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
whereas the contributions of fields scattered from each particle expanded
|
||||||
|
around the global origin
|
||||||
|
\begin_inset Formula $\vect r_{\square}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is, according to
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:singular vswf translation"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Using the unitarity
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:regular translation unitarity"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and composition
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:regular translation composition"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
properties, one has
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align}
|
||||||
|
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
|
||||||
|
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where only the last expression is suitable for numerical evaluation with
|
||||||
|
truncated matrices, because the previous ones contain a translation operator
|
||||||
|
right next to an incident field coefficient vector (see Sec.
|
||||||
|
TODO).
|
||||||
|
Similarly,
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align}
|
||||||
|
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
|
||||||
|
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Substituting
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:atf form multiparticle"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:f squared form multiparticle"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
into
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:scattering CS single"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:absorption CS single"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we get the many-particle expressions for extinction, scattering and absorption
|
||||||
|
cross sections suitable for numerical evaluation:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray}
|
||||||
|
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
||||||
|
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||||||
|
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||||||
|
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\
|
||||||
|
\label{eq:absorption CS multi}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\begin_inset Formula $=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
An alternative approach to derive the absorption cross section is via a
|
||||||
|
power transport argument.
|
||||||
|
Note the direct proportionality between absorption cross section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:absorption CS single"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and net radiated power for single scatterer
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:Power transport"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
In the many-particle setup (with non-lossy background medium, so that only
|
||||||
|
the particles absorb), the total absorbed power is equal to the sum of
|
||||||
|
absorbed powers on each particle,
|
||||||
|
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Using the power transport formula
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:Power transport"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
particle-wise gives
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
which seems different from
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:absorption CS multi"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, but using
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:particle total incident field coefficient a"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we can rewrite it as
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
||||||
|
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
It is easy to show that all the terms of
|
||||||
|
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
containing the singular spherical Bessel functions
|
||||||
|
\begin_inset Formula $y_{l}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are imaginary,
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO better formulation
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
so that actually
|
||||||
|
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
proving that the expressions in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:absorption CS multi"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:absorption CS multi alternative"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are equal.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsubsection
|
\begin_layout Subsubsection
|
||||||
|
|
Loading…
Reference in New Issue