General 2D vector translation coefficient app.

Results seem consistent with the prior triangular lattice code


Former-commit-id: 99e2aec5d0662c46c2aaa5e4496033ddbb506042
This commit is contained in:
Marek Nečada 2018-12-12 11:40:18 +02:00
parent 70af55649e
commit 665ad09dbb
3 changed files with 362 additions and 37 deletions

154
qpms/apps/2dlattice_ewald.c Normal file
View File

@ -0,0 +1,154 @@
// c99 -o ew_gen_kin -Wall -I ../.. -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c -lgsl -lm -lblas
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <qpms/translations.h>
#include <qpms/lattices.h>
#include <gsl/gsl_const_mksa.h>
// Command line order:
// outfile b1.x b1.y b2.x b2.y lMax scuffomega refindex npart part0.x part0.y [part1.x part1.y [...]]
//
// Standard input (per line):
// k.x k.y
//
// Output data format (line):
//
#define MAXKCOUNT 200 // 200 // serves as klist default buffer size
//#define KMINCOEFF 0.783 //0.9783 // 0.783 // not used if KSTDIN defined
//#define KMAXCOEFF 1.217 //1.0217 // 1.217 // not used if KSTDIN defined
#define KLAYERS 20
#define RLAYERS 20
const double s3 = 1.732050807568877293527446341505872366942805253810380628055;
// IMPORTANT: lattice properties here
const qpms_y_t lMax = 3;
const double REFINDEX = 1.52;
const double LATTICE_H = 576e-9;
static const double SCUFF_OMEGAUNIT = 3e14;
static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR;
static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE;
static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT;
int main (int argc, char **argv) {
//const double LATTICE_A = s3*LATTICE_H;
//const double INVLATTICE_A = 4*M_PI / s3 / LATTICE_A;
if (argc < 12) abort();
char *outfile = argv[1];
char *errfile = NULL; // Filename for the error estimate output; NOT USED
cart2_t b1 = {strtod(argv[2], NULL), strtod(argv[3], NULL)},
b2 = {strtod(argv[4], NULL), strtod(argv[5], NULL)};
const qpms_l_t lMax = strtol(argv[6], NULL, 10); assert(lMax>0);
const double scuffomega = strtod(argv[7], NULL);
const double refindex = strtod(argv[8], NULL);
const int npart = strtol(argv[9], NULL, 10); assert(npart>0);
assert(argc >= 2*npart + 10);
assert(npart > 0);
cart2_t part_positions[npart];
for(int p = 0; p < npart; ++p) {
part_positions[p].x = strtod(argv[10+2*p], NULL);
part_positions[p].y = strtod(argv[10+2*p+1], NULL);
}
//#ifdef KSTDIN
size_t kcount = 0;
size_t klist_capacity = MAXKCOUNT;
cart2_t *klist = malloc(sizeof(cart2_t) * klist_capacity);
while (scanf("%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) {
++kcount;
if(kcount >= klist_capacity) {
klist_capacity *= 2;
klist = realloc(klist, sizeof(cart2_t) * klist_capacity);
if (klist == NULL) abort();
}
}
//#else
#if 0
cart2_t klist[MAXKCOUNT];
int kcount = MAXKCOUNT;
for (int i = 0; i < kcount; ++i) { // TODO this should depend on orientation...
klist[i].x = 0;
klist[i].y = (4.* M_PI / 3. / LATTICE_A) * (KMINCOEFF + (KMAXCOEFF-KMINCOEFF)/kcount*i);
}
#endif
const double unitcell_area = l2d_unitcell_area(b1, b2);
l2d_reduceBasis(b1, b2, &b1, &b2);
// TODO more clever way of determining the cutoff
const double a = sqrt(unitcell_area); // N.B. different meaning than before
const double maxR = 25 * a;
const double maxK = 25 * 2*M_PI/a;
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS); // vai POWER_CS?
FILE *out = fopen(outfile, "w");
FILE *err = NULL;
if (errfile)
err = fopen(errfile, "w");
{
const double omega = scuffomega * SCUFF_OMEGAUNIT;
const double EeV = omega * hbar / eV;
const double k0_vac = omega / c0;
const double k0_eff = k0_vac * refindex;
const double eta = 5.224/a; // FIXME quite arbitrary, but this one should work
// indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
complex double W[npart][npart][2][c->nelem][c->nelem];
double Werr[npart][npart][npart][c->nelem][c->nelem];
for (size_t ki = 0; ki < kcount; ++ki) {
cart2_t beta = klist[ki];
memset(W, 0, sizeof(W));
if(err)
memset(Werr, 0, sizeof(Werr));
const ptrdiff_t deststride = &(W[0][0][0][1][0]) - &(W[0][0][0][0][0]);
const ptrdiff_t srcstride = &(W[0][0][0][0][1]) - &(W[0][0][0][0][0]);
assert (srcstride == 1 && deststride == c->nelem);
for (size_t ps = 0; ps < npart; ++ps) for (size_t pd = 0; pd < npart; ++pd)
// TODO optimize (calculate only once for each particle shift; especially if pd == ps)
qpms_trans_calculator_get_AB_arrays_e32(c,
&(W[pd][ps][0][0][0]), err ? &(Werr[pd][ps][0][0][0]) : NULL, // Adest, Aerr,
&(W[pd][ps][1][0][0]), err ? &(Werr[pd][ps][1][0][0]) : NULL, // Bdest, Berr,
deststride, srcstride,
eta, k0_eff, b1, b2,
beta,
cart2_substract(part_positions[pd], part_positions[ps]), // CHECKSIGN
maxR, maxK
);
// TODO CHECK B<-A vs. A<-B relation
fprintf(out, "%.16g\t%.16g\t%.16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
if(err) fprintf(err, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
size_t totalelems = sizeof(W) / sizeof(complex double);
for (size_t i = 0; i < totalelems; ++i) {
complex double w = ((complex double *)W)[i];
fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w));
if (err)
fprintf(err, "%.3g\t", ((double *)Werr)[i]);
}
fputc('\n', out);
if(err) fputc('\n', err);
}
}
fclose(out);
if(err) fclose(err);
//#ifdef KSTDIN
free(klist);
//#endif
qpms_trans_calculator_free(c);
}

View File

@ -1154,6 +1154,125 @@ int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
}
#ifdef LATTICESUMS31
int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k, const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip
const size_t nKpoints, const cart2_t *Kpoints,
const double beta,//DIFF21
const double particle_shift//DIFF21
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e32c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = (particle_shift == 0)//DIFF21((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc);
double *serr_short, *serr_long, *serr_total;
if(doerr) {
serr_short = malloc(sizeof(double)*nelem2_sc);
serr_long = malloc(sizeof(double)*nelem2_sc);
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
int retval;
retval = ewald31z_sigma_long_points_and_shift(sigmas_long, serr_long, //DIFF21
c->e32c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
if (retval) abort();
retval = ewald31z_sigma_short_points_and_shift(sigmas_short, serr_short, //DIFF21
c->e32c, eta, k, nRpoints, Rpoints, beta, particle_shift);
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
sigmas_total[y] = sigmas_short[y] + sigmas_long[y];
if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y)
serr_total[y] = serr_short[y] + serr_long[y];
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald31z_sigma0(&sigma0, &sigma0_err, c->e32c, eta, k);//DIFF21
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
if(doerr) serr_total[y] += sigma0_err;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){
const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
complex double Asum, Asumc; ckahaninit(&Asum, &Asumc);
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ... (N.B. skip will be different for 31z and 32)
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
const complex double multiplier = c->A_multipliers[i][q];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Asum, &Asumc, multiplier * sigma);
if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]);
}
*(Adest + deststride * desti + srcstride * srci) = Asum;
if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr;
// TODO skip if ...
complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc);
double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc);
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p_ = n + nu - 2*q + 1;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_);
const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Bsum, &Bsumc, multiplier * sigma);
if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]);
}
*(Bdest + deststride * desti + srcstride * srci) = Bsum;
if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr;
++srci;
}
++desti;
srci = 0;
}
}
break;
default:
abort();
}
free(sigmas_short);
free(sigmas_long);
free(sigmas_total);
if(doerr) {
free(serr_short);
free(serr_long);
free(serr_total);
}
return 0;
}
#endif LATTICESUMS_31
#ifdef LATTICESUMS32
int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_trans_calculator *c,
@ -1271,48 +1390,28 @@ int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_tra
return 0;
}
#if 0
int qpms_trans_calculator_e32_long_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_long, double *Aerr_long,
complex double *Bdest_long, double *Berr_long,
double eta, double k, double unitcell_area,
size_t npoints, const cart2_t *Kpoints,
cart2_t beta,
cart2_t particle_shift
)
{
}
int qpms_trans_calculator_e32_short_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_short, double *Aerr_short,
complex double *Bdest_short, double *Berr_short,
double eta, double k,
size_t npoints, const cart2_t *Rpoints,
cart2_t beta,
cart2_t particle_shift
};
#endif // 0
#endif // LATTICESUMS32
#ifdef LATTICESUMS31
int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_trans_calculator *c,
// N.B. alternative point generation strategy toggled by macro GEN_RSHIFTEDPOINTS
// and GEN_KSHIFTEDPOINTS.
// The results should be the same. The performance can slightly differ (especially
// if some optimizations in the point generators are implemented.)
int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k, const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip
const size_t nKpoints, const cart2_t *Kpoints,
const double beta,//DIFF21
const double particle_shift//DIFF21
const double eta, const double k,
const cart2_t b1, const cart2_t b2,
const cart2_t beta,
const cart2_t particle_shift,
double maxR, double maxK
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e32c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = (particle_shift == 0)//DIFF21((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
const bool do_sigma0 = ((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
@ -1324,13 +1423,48 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
const double unitcell_area = l2d_unitcell_area(b1, b2);
cart2_t rb1, rb2; // reciprocal basis
if (QPMS_SUCCESS != l2d_reciprocalBasis2pi(b1, b2, &rb1, &rb2)) abort();
PGen Rgen = PGen_xyWeb_new(b1, b2, BASIS_RTOL,
#ifdef GEN_RSHIFTEDPOINTS
cart2_scale(-1 /*CHECKSIGN*/, particle_shift),
#else
CART2_ZERO,
#endif
0, !do_sigma0, maxR, false);
PGen Kgen = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL,
#ifdef GEN_KSHIFTEDPOINTS
beta,
#else
CART2_ZERO,
#endif
0, true, maxK, false);
int retval;
retval = ewald31z_sigma_long_points_and_shift(sigmas_long, serr_long, //DIFF21
c->e32c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
//retval = ewald32_sigma_long_points_and_shift(sigmas_long, serr_long,
// c->e32c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
retval = ewald3_sigma_long(sigmas_long, serr_long, c->e32c, eta, k,
unitcell_area, LAT_2D_IN_3D_XYONLY, &Kgen,
#ifdef GEN_KSHIFTEDPOINTS
true,
#else
false,
#endif
cart22cart3xy(beta), cart22cart3xy(particle_shift));
if (retval) abort();
retval = ewald31z_sigma_short_points_and_shift(sigmas_short, serr_short, //DIFF21
c->e32c, eta, k, nRpoints, Rpoints, beta, particle_shift);
//retval = ewald32_sigma_short_points_and_shift(sigmas_short, serr_short,
// c->e32c, eta, k, nRpoints, Rpoints, beta, particle_shift);
retval = ewald3_sigma_short(sigmas_short, serr_short, c->e32c, eta, k,
LAT_2D_IN_3D_XYONLY, &Rgen,
#ifdef GEN_RSHIFTEDPOINTS
true,
#else
false,
#endif
cart22cart3xy(beta), cart22cart3xy(particle_shift));
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
@ -1340,7 +1474,7 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald31z_sigma0(&sigma0, &sigma0_err, c->e32c, eta, k);//DIFF21
retval = ewald32_sigma0(&sigma0, &sigma0_err, c->e32c, eta, k);
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
@ -1361,7 +1495,7 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ... (N.B. skip will be different for 31z and 32)
// TODO skip if ...
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
@ -1410,6 +1544,31 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
}
return 0;
}
#if 0
int qpms_trans_calculator_e32_long_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_long, double *Aerr_long,
complex double *Bdest_long, double *Berr_long,
double eta, double k, double unitcell_area,
size_t npoints, const cart2_t *Kpoints,
cart2_t beta,
cart2_t particle_shift
)
{
}
int qpms_trans_calculator_e32_short_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest_short, double *Aerr_short,
complex double *Bdest_short, double *Berr_short,
double eta, double k,
size_t npoints, const cart2_t *Rpoints,
cart2_t beta,
cart2_t particle_shift
};
#endif // 0
#endif // LATTICESUMS32
#ifdef LATTICESUMS_OLD
int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculator *c,

View File

@ -191,6 +191,18 @@ int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_tra
const cart2_t beta,
const cart2_t particle_shift
);
int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
complex double *Adest, double *Aerr,
complex double *Bdest, double *Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
const double eta, const double k,
cart2_t b1, cart2_t b2,
const cart2_t beta,
const cart2_t particle_shift,
double maxR, double maxK
);
#endif //LATTICESUMS32
#ifdef LATTICESUMS31