diff --git a/notes/radpower.lyx b/notes/radpower.lyx index bf85231..d7b0a39 100644 --- a/notes/radpower.lyx +++ b/notes/radpower.lyx @@ -188,6 +188,21 @@ theorems-ams \end_inset +\begin_inset FormulaMacro +\newcommand{\bra}[1]{\left\langle #1\right|} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ket}[1]{\left|#1\right\rangle } +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\sci}[1]{\mathfrak{#1}} +\end_inset + + \end_layout \begin_layout Title @@ -201,7 +216,7 @@ Marek Nečada \begin_layout Abstract This memo deals with the formulae for radiation transfer, absorption, extinction for single particle and composite system of several nanoparticles. - I also derive some natural conditions on + I also derive some natural conditions on the \begin_inset Formula $T$ \end_inset @@ -215,6 +230,16 @@ Conventions \begin_layout Standard If not stated otherwise, Kristensson's notation and normalisation conventions are used in this memo. + That means, among other things, that the +\begin_inset Formula $T$ +\end_inset + +-matrix is dimensionless and the expansion coefficients of spherical waves + have units of +\begin_inset Formula $\sqrt{\mbox{power}}$ +\end_inset + +. \end_layout \begin_layout Section @@ -338,14 +363,14 @@ reference "eq:T-matrix definition" we get \begin_inset Formula \begin{eqnarray} -P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\ +P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\ & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\ & = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type} \end{eqnarray} \end_inset -a condition that should be checked e.g. +a condition that should be ensured to be true e.g. for the \begin_inset Formula $T$ \end_inset @@ -410,5 +435,139 @@ reference "eq:Absorption is never negative for single wave type" satisfied? \end_layout +\begin_layout Standard +Let me rewrite the expression +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative with T" + +\end_inset + + (without any assumptions about the values of the coefficients +\begin_inset Formula $a_{n}$ +\end_inset + +) in Dirac notation where the ket +\begin_inset Formula $\ket a$ +\end_inset + + is the vector of all the exciting wave coefficients +\begin_inset Formula $a_{n}$ +\end_inset + +. + Furthemore, +\begin_inset Formula $\ket{e_{m}}$ +\end_inset + + is the unit vector containing one for the wave indexed by +\begin_inset Formula $m$ +\end_inset + + and zeros for the rest, so that +\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$ +\end_inset + +. + The general expression +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative with T" + +\end_inset + + and condition +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative" + +\end_inset + + then reads +\begin_inset Formula +\begin{eqnarray} +P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\ + & = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\ + & = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation} +\end{eqnarray} + +\end_inset + +giving the following condition on the +\begin_inset Formula $T$ +\end_inset + +-matrix: +\end_layout + +\begin_layout Proposition +A +\begin_inset Formula $T$ +\end_inset + +-matrix +\begin_inset Formula $T$ +\end_inset + + is unphysical unless the matrix +\begin_inset Formula +\begin{equation} +W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix} +\end{equation} + +\end_inset + + is negative (semi)definite. +\end_layout + +\begin_layout Standard +Obviously, matrix +\begin_inset Formula $W$ +\end_inset + + is self-adjoint and it has a clear interpretation given by +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Absorption is never negative in Dirac notation" + +\end_inset + + – for an exciting field given by its expansion coefficient vector +\begin_inset Formula $\ket a$ +\end_inset + +, +\begin_inset Formula $-P=-\bra aW\ket a$ +\end_inset + + is the power absorbed by the scatterer. +\end_layout + +\begin_layout Section +Multiple scattering +\end_layout + +\begin_layout Standard +The purpose of this section is to clarify the formulae for absorption and + extinction in a system of multiple scatterers. + Let the scatterers be indexed by fraktur letters, so the power +\begin_inset Quotes eld +\end_inset + +generated +\begin_inset Quotes erd +\end_inset + + by nanoparticle +\begin_inset Formula $\sci k$ +\end_inset + + will be denoted as +\begin_inset Formula $P^{\sci k}$ +\end_inset + +. +\end_layout + \end_body \end_document