Notes on power matrix

Former-commit-id: 004525ac721c833bdf6d5d71c0780a52dde9df1e
This commit is contained in:
Marek Nečada 2017-09-06 12:43:49 +00:00
parent 150c77c31e
commit 680e6f8573
1 changed files with 162 additions and 3 deletions

View File

@ -188,6 +188,21 @@ theorems-ams
\end_inset
\begin_inset FormulaMacro
\newcommand{\bra}[1]{\left\langle #1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ket}[1]{\left|#1\right\rangle }
\end_inset
\begin_inset FormulaMacro
\newcommand{\sci}[1]{\mathfrak{#1}}
\end_inset
\end_layout
\begin_layout Title
@ -201,7 +216,7 @@ Marek Nečada
\begin_layout Abstract
This memo deals with the formulae for radiation transfer, absorption, extinction
for single particle and composite system of several nanoparticles.
I also derive some natural conditions on
I also derive some natural conditions on the
\begin_inset Formula $T$
\end_inset
@ -215,6 +230,16 @@ Conventions
\begin_layout Standard
If not stated otherwise, Kristensson's notation and normalisation conventions
are used in this memo.
That means, among other things, that the
\begin_inset Formula $T$
\end_inset
-matrix is dimensionless and the expansion coefficients of spherical waves
have units of
\begin_inset Formula $\sqrt{\mbox{power}}$
\end_inset
.
\end_layout
\begin_layout Section
@ -338,14 +363,14 @@ reference "eq:T-matrix definition"
we get
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
\end{eqnarray}
\end_inset
a condition that should be checked e.g.
a condition that should be ensured to be true e.g.
for the
\begin_inset Formula $T$
\end_inset
@ -410,5 +435,139 @@ reference "eq:Absorption is never negative for single wave type"
satisfied?
\end_layout
\begin_layout Standard
Let me rewrite the expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
(without any assumptions about the values of the coefficients
\begin_inset Formula $a_{n}$
\end_inset
) in Dirac notation where the ket
\begin_inset Formula $\ket a$
\end_inset
is the vector of all the exciting wave coefficients
\begin_inset Formula $a_{n}$
\end_inset
.
Furthemore,
\begin_inset Formula $\ket{e_{m}}$
\end_inset
is the unit vector containing one for the wave indexed by
\begin_inset Formula $m$
\end_inset
and zeros for the rest, so that
\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
\end_inset
.
The general expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
and condition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
then reads
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
& = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
& = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
\end{eqnarray}
\end_inset
giving the following condition on the
\begin_inset Formula $T$
\end_inset
-matrix:
\end_layout
\begin_layout Proposition
A
\begin_inset Formula $T$
\end_inset
-matrix
\begin_inset Formula $T$
\end_inset
is unphysical unless the matrix
\begin_inset Formula
\begin{equation}
W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
\end{equation}
\end_inset
is negative (semi)definite.
\end_layout
\begin_layout Standard
Obviously, matrix
\begin_inset Formula $W$
\end_inset
is self-adjoint and it has a clear interpretation given by
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative in Dirac notation"
\end_inset
for an exciting field given by its expansion coefficient vector
\begin_inset Formula $\ket a$
\end_inset
,
\begin_inset Formula $-P=-\bra aW\ket a$
\end_inset
is the power absorbed by the scatterer.
\end_layout
\begin_layout Section
Multiple scattering
\end_layout
\begin_layout Standard
The purpose of this section is to clarify the formulae for absorption and
extinction in a system of multiple scatterers.
Let the scatterers be indexed by fraktur letters, so the power
\begin_inset Quotes eld
\end_inset
generated
\begin_inset Quotes erd
\end_inset
by nanoparticle
\begin_inset Formula $\sci k$
\end_inset
will be denoted as
\begin_inset Formula $P^{\sci k}$
\end_inset
.
\end_layout
\end_body
\end_document