diff --git a/misc/lat2d_realfreqsvd.py b/misc/lat2d_realfreqsvd.py new file mode 100755 index 0000000..916c9d4 --- /dev/null +++ b/misc/lat2d_realfreqsvd.py @@ -0,0 +1,120 @@ +#!/usr/bin/env python3 + +import math +from qpms.argproc import ArgParser, sfloat + +ap = ArgParser(['background', 'lattice2d', 'multi_particle', 'omega_seq']) + +ap.add_argument("-k", nargs=2, type=sfloat, required=True, help='k vector', metavar=('K_X', 'K_Y')) +ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)") + +ap.add_argument("-g", "--little-group", type=str, default="trivial_g", help="Little group for subspace irrep classification", action="store") + +ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') +ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") +ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") +ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot") + +a=ap.parse_args() + +import logging +logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) + + +#Important! The particles are supposed to be of D2h/D4h symmetry +# thegroup = 'D4h' if px == py and not a.D2 else 'D2h' + +a1 = ap.direct_basis[0] +a2 = ap.direct_basis[1] + +particlestr = "svdinterval" # TODO particle string specifier or some hash, do this in argproc.py +defaultprefix = "%s_basis%gnm_%gnm__%gnm_%gnm_f(%g..%g..%g)eV_k%g_%g" % ( + particlestr, a1[0]*1e9, a1[1]*1e9, a2[0]*1e9, a2[1]*1e9, *(a.eV_seq), ap.k[0], ap.k[1]) +logging.info("Default file prefix: %s" % defaultprefix) + + +import numpy as np +import qpms +import warnings +from qpms.cybspec import BaseSpec +from qpms.cytmatrices import CTMatrix, TMatrixGenerator +from qpms.qpms_c import Particle, pgsl_ignore_error +from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude +from qpms.cycommon import DebugFlags, dbgmsg_enable +from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar +from qpms.symmetries import point_group_info +eh = eV/hbar + +# not used; TODO: +irrep_labels = {"B2''":"$B_2''$", + "B2'":"$B_2'$", + "A1''":"$A_1''$", + "A1'":"$A_1'$", + "A2''":"$A_2''$", + "B1''":"$B_1''$", + "A2'":"$A_2'$", + "B1'":"$B_1'$", + "E'":"$E'$", + "E''":"$E''$",} + +dbgmsg_enable(DebugFlags.INTEGRATION) + + + +omegas = ap.omegas + +logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, omegas[-1]/eh)) + +particles = ap.get_particles() + +ss, ssw = ScatteringSystem.create(particles, ap.background_emg, omegas[0], latticebasis=ap.direct_basis) +k = np.array([ap.k[0], ap.k[1], 0]) +# Auxillary finite scattering system for irrep decomposition, quite a hack +ss1, ssw1 = ScatteringSystem.create(particles, ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[ap.little_group])) + +wavenumbers = np.empty(omegas.shape) +SVs = [None] * ss1.nirreps +for iri in range(ss1.nirreps): + SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],)) +for i, omega in enumerate(omegas): + ssw = ss(omega) + wavenumbers[i] = ssw.wavenumber.real + if ssw.wavenumber.imag: + warnings.warn("Non-zero imaginary wavenumber encountered") + with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed + ImTW = ssw.modeproblem_matrix_full(k) + for iri in range(ss1.nirreps): + ImTW_packed = ss1.pack_matrix(ImTW, iri) + SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False) + +outfile = defaultprefix + ".npz" if a.output is None else a.output +np.savez(outfile, meta=vars(a), omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume + ) +logging.info("Saved to %s" % outfile) + + +if a.plot or (a.plot_out is not None): + import matplotlib + matplotlib.use('pdf') + from matplotlib import pyplot as plt + + fig = plt.figure() + ax = fig.add_subplot(111) + cc = plt.rcParams['axes.prop_cycle']() + for iri in range(ss1.nirreps): + cargs = next(cc) + nlines = min(a.singular_values, ss1.saecv_sizes[iri]) + for i in range(nlines): + ax.plot(omegas/eh, SVs[iri][:,-1-i], + label= None if i else irrep_labels.get(ss1.irrep_names[iri], ss1.irrep_names[iri]), + **cargs) + ax.set_ylim([0,1.1]) + ax.set_xlabel('$\hbar \omega / \mathrm{eV}$') + ax.set_ylabel('Singular values') + ax.legend() + + plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out + fig.savefig(plotfile) + +exit(0) +