More or less finished T-matrix description for hexlaser peper
Former-commit-id: c8e05c42d157909658061fbf6afce23d33be88ac
This commit is contained in:
parent
33a603db38
commit
6a07f6a212
|
@ -605,7 +605,7 @@ reference "eq:Tmatrix definition"
|
|||
-coefficients which describe the multipole excitations of the particles
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\coeffs_{n}=T_{n}\left(\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}\right).\label{eq:multiple scattering per particle a}
|
||||
\coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -641,6 +641,205 @@ name "sub:Periodic-systems"
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In an infinite periodic array of nanoparticles, the excitations of the nanoparti
|
||||
cles take the quasiperiodic Bloch-wave form
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffs_{i\alpha}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\alpha}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
(assuming the incident external field has the same periodicity,
|
||||
\begin_inset Formula $\coeffr_{\mathrm{ext}(i\alpha)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\alpha\right)}$
|
||||
\end_inset
|
||||
|
||||
) where
|
||||
\begin_inset Formula $\alpha$
|
||||
\end_inset
|
||||
|
||||
is the index of a particle inside one unit cell and
|
||||
\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
|
||||
\end_inset
|
||||
|
||||
are the lattice vectors corresponding to the sites (labeled by multiindices
|
||||
|
||||
\begin_inset Formula $i,i'$
|
||||
\end_inset
|
||||
|
||||
) of a Bravais lattice
|
||||
\begin_inset Formula $\Lambda$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The multiple-scattering problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:multiple scattering per particle a"
|
||||
|
||||
\end_inset
|
||||
|
||||
then takes the form
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffs_{i\alpha}=T_{\alpha}\left(\coeffr_{\mathrm{ext}(i\alpha)}+\sum_{(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha}\coeffs_{i'\alpha'}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffs_{i\alpha}-T_{\alpha}\sum_{(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(i\alpha)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
or, labeling
|
||||
\begin_inset Formula $W_{\alpha\alpha'}=\sum_{i';(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\alpha')\ne\left(0,\alpha\right)}S_{0\alpha,i'\alpha'}e^{i\vect k\cdot\vect R_{i'}}$
|
||||
\end_inset
|
||||
|
||||
and using the quasiperiodicity,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sum_{\alpha'}\left(\delta_{\alpha\alpha'}\mathbb{I}-T_{\alpha}W_{\alpha\alpha'}\right)\coeffs_{\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(\alpha)},\label{eq:multiple scattering per particle a periodic}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\coeffs_{\alpha}-T_{\alpha}\sum_{\alpha'}W_{\alpha\alpha'}\coeffs_{\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(\alpha)},\label{eq:multiple scattering per particle a periodic-2}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
which reduces the linear problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:multiple scattering per particle a"
|
||||
|
||||
\end_inset
|
||||
|
||||
to interactions between particles inside single unit cell.
|
||||
A problematic part is the evaluation of the translation operator lattice
|
||||
sums
|
||||
\begin_inset Formula $W_{\alpha\alpha'}$
|
||||
\end_inset
|
||||
|
||||
; this is performed using exponentially convergent Ewald-type representations
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "linton_lattice_2010"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In an infinite periodic system, a nonlossy mode supports itself without
|
||||
external driving, i.e.
|
||||
such mode is described by excitation coefficients
|
||||
\begin_inset Formula $a_{\alpha}$
|
||||
\end_inset
|
||||
|
||||
that satisfy eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:multiple scattering per particle a periodic-2"
|
||||
|
||||
\end_inset
|
||||
|
||||
with zero right-hand side.
|
||||
That can happen if the block matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left\{ \delta_{\alpha\alpha'}\mathbb{I}-T_{\alpha}\left(\vect{\omega}\right)W_{\alpha\alpha'}\left(\omega,\vect k\right)\right\} _{\alpha\alpha'}$
|
||||
\end_inset
|
||||
|
||||
from the left hand side of
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:multiple scattering per particle a periodic"
|
||||
|
||||
\end_inset
|
||||
|
||||
is singular (here we explicitely note the
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
depence).
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
In other words, the energy bands of the lattice are given by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\det M\left(\omega,\vect k\right)=0.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For lossy nanoparticles, however, perfect propagating modes will not exist
|
||||
and
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
will never be perfectly singular.
|
||||
Therefore in practice, we get the bands by scanning over
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
to search for
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
which have an
|
||||
\begin_inset Quotes sld
|
||||
\end_inset
|
||||
|
||||
almost zero
|
||||
\begin_inset Quotes srd
|
||||
\end_inset
|
||||
|
||||
singular value.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
|
|
Loading…
Reference in New Issue