WIP Dealing with the Beyn clusterfuck (compiles now).
TODO inverse M -matrix Former-commit-id: eb2a37128c04c10406dc65eca7d47152b4d93db9
This commit is contained in:
parent
b52942a5e5
commit
6e875d65ae
191
qpms/beyn.c
191
qpms/beyn.c
|
@ -1,6 +1,6 @@
|
|||
/* Copyright (C) 2005-2011 M. T. Homer Reid
|
||||
*
|
||||
* This file is part of SCUFF-EM.
|
||||
/*
|
||||
* This file was originally part of SCUFF-EM by M. T. Homer Reid.
|
||||
* Modified by Kristian Arjas and Marek Nečada to work without libhmat and libhrutil.
|
||||
*
|
||||
* SCUFF-EM is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
|
@ -17,19 +17,15 @@
|
|||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* libBeyn.cc -- implementation of Beyn's method for
|
||||
* -- nonlinear eigenvalue problems
|
||||
*
|
||||
* Homer Reid -- 6/2016
|
||||
*
|
||||
*/
|
||||
#define STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
|
||||
|
||||
#include <complex.h>
|
||||
#include <lapacke.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
#include <complex.h>
|
||||
#include "qpms_error.h"
|
||||
|
||||
// Maybe GSL works?
|
||||
#include <gsl/gsl_matrix.h>
|
||||
|
@ -40,6 +36,8 @@
|
|||
|
||||
#include <beyn.h>
|
||||
|
||||
STATIC_ASSERT((sizeof(lapack_complex_double) == sizeof(gsl_complex)), lapack_and_gsl_complex_must_be_consistent);
|
||||
|
||||
// Uniformly random number between -2 and 2
|
||||
gsl_complex zrandN(){
|
||||
double a = (rand()*4.0/RAND_MAX) - 2;
|
||||
|
@ -56,14 +54,17 @@ BeynSolver *CreateBeynSolver(int M, int L)
|
|||
|
||||
Solver->M = M;
|
||||
Solver->L = L;
|
||||
QPMS_ENSURE(L <= M, "We expect L <= M, but we got L = %d, M = %d ", L, M);
|
||||
|
||||
#if 0
|
||||
int MLMax = (M>L) ? M : L;
|
||||
#endif
|
||||
int MLMin = (M<L) ? M : L;
|
||||
|
||||
// storage for eigenvalues and eigenvectors
|
||||
Solver->Eigenvalues = gsl_vector_complex_calloc(L);
|
||||
Solver->EVErrors = gsl_vector_complex_calloc(L);
|
||||
Solver->Residuals = gsl_vector_complex_calloc(L);
|
||||
Solver->Residuals = gsl_vector_calloc(L);
|
||||
Solver->Eigenvectors = gsl_matrix_complex_calloc(M, L);
|
||||
|
||||
// storage for singular values, random VHat matrix, etc. used in algorithm
|
||||
|
@ -76,14 +77,13 @@ BeynSolver *CreateBeynSolver(int M, int L)
|
|||
Solver->Sigma = gsl_vector_calloc(MLMin);
|
||||
ReRandomize(Solver,(unsigned)time(NULL));
|
||||
|
||||
#if 0
|
||||
// internal workspace: need storage for 2 MxL matrices
|
||||
// plus 3 LxL matrices
|
||||
#define MLBUFFERS 2
|
||||
#define LLBUFFERS 3
|
||||
size_t ML = MLMax*L, LL = L*L;
|
||||
size_t WorkspaceSize = (MLBUFFERS*ML + LLBUFFERS*LL)*sizeof(double complex);
|
||||
|
||||
Solver->Workspace = (double complex*)malloc( WorkspaceSize );
|
||||
#endif
|
||||
|
||||
return Solver;
|
||||
|
||||
|
@ -104,10 +104,9 @@ void DestroyBeynSolver(BeynSolver *Solver)
|
|||
gsl_matrix_complex_free(Solver->A1Coarse);
|
||||
gsl_matrix_complex_free(Solver->MInvVHat);
|
||||
gsl_vector_free(Solver->Sigma);
|
||||
gsl_vector_free(Solver->Residuals);
|
||||
gsl_matrix_complex_free(Solver->VHat);
|
||||
|
||||
free(Solver->Workspace);
|
||||
|
||||
free(Solver);
|
||||
}
|
||||
|
||||
|
@ -134,7 +133,7 @@ void ReRandomize(BeynSolver *Solver, unsigned int RandSeed)
|
|||
/* eigenvalues and eigenvectors */
|
||||
/***************************************************************/
|
||||
|
||||
int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
||||
int ProcessAMatrices(BeynSolver *Solver, beyn_function_M_t M_function,
|
||||
void *Params,
|
||||
gsl_matrix_complex *A0, gsl_matrix_complex *A1, double complex z0,
|
||||
gsl_vector_complex *Eigenvalues, gsl_matrix_complex *Eigenvectors)
|
||||
|
@ -155,15 +154,27 @@ int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
|||
|
||||
gsl_matrix_complex* W0TFull = gsl_matrix_complex_calloc(L,L);
|
||||
//A0->SVD(Sigma, &V0Full, &W0TFull);
|
||||
gsl_vector_complex *work = gsl_vector_complex_alloc(M);
|
||||
|
||||
QPMS_ENSURE(Sigma->stride == 1, "Sigma vector stride must be 1 for LAPACKE_zgesdd, got %zd.", Sigma->stride);
|
||||
// FIXME not supported by GSL; use LAPACKE_zgesdd
|
||||
gsl_linalg_complex_SV_decomp(V0Full, W0TFull, Sigma, work);
|
||||
//gsl_linalg_complex_SV_decomp(V0Full, W0TFull, Sigma, work);
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgesdd(LAPACK_ROW_MAJOR, // A = U*Σ*conjg(V')
|
||||
'O' /*jobz, 'O' overwrites a with U and saves conjg(V') in vt if m >= n, i.e. if M >= L, which holds*/,
|
||||
V0Full->size1 /* m, number of rows */,
|
||||
V0Full->size2 /* n, number of columns */,
|
||||
(lapack_complex_double *)(V0Full->data) /*a*/,
|
||||
V0Full->tda /*lda*/,
|
||||
Sigma->data /*s*/,
|
||||
NULL /*u; not used*/,
|
||||
0 /*ldu; not used*/,
|
||||
(lapack_complex_double *)W0TFull->data /*vt*/,
|
||||
W0TFull->tda /*ldvt*/
|
||||
));
|
||||
|
||||
|
||||
// compute effective rank K (number of eigenvalue candidates)
|
||||
int K=0;
|
||||
for(int k=0; k<Sigma->size; k++)
|
||||
for(int k=0; k<Sigma->size /* this is L, actually */; k++)
|
||||
{ if (Verbose) printf("Beyn: SV(%i)=%e",k,gsl_vector_get(Sigma, k));
|
||||
if (gsl_vector_get(Sigma, k) > RankTol )
|
||||
K++;
|
||||
|
@ -191,7 +202,6 @@ int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
|||
|
||||
gsl_matrix_complex_free(V0Full);
|
||||
gsl_matrix_complex_free(W0TFull);
|
||||
gsl_vector_complex_free(work);
|
||||
gsl_vector_complex_free(TempM);
|
||||
gsl_vector_complex_free(TempL);
|
||||
|
||||
|
@ -202,8 +212,8 @@ int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
|||
|
||||
printf(" Multiplying V0*A1->TM...\n");
|
||||
//V0.Multiply(A1, &TM2, "--transA C"); // TM2 <- V0' * A1
|
||||
gsl_complex one = gsl_complex_rect(1,0);
|
||||
gsl_complex zero = gsl_complex_rect(0,0);
|
||||
const gsl_complex one = gsl_complex_rect(1,0);
|
||||
const gsl_complex zero = gsl_complex_rect(0,0);
|
||||
gsl_blas_zgemm(CblasConjTrans, CblasNoTrans, one,
|
||||
V0, A1, zero, TM2);
|
||||
|
||||
|
@ -234,94 +244,72 @@ int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
|||
// B -> S*Lambda*S'
|
||||
printf(" Eigensolving (%i,%i)\n",K,K);
|
||||
|
||||
gsl_vector_complex *Lambda = gsl_vector_complex_calloc(K); // Eigenvalues
|
||||
gsl_matrix_complex *S = gsl_matrix_complex_calloc(K,K); // Eigenvectors
|
||||
gsl_matrix_complex *Eye = gsl_matrix_complex_alloc(K,K);
|
||||
|
||||
gsl_vector_complex *alph = gsl_vector_complex_calloc(K);
|
||||
gsl_vector_complex *beta = gsl_vector_complex_calloc(K);
|
||||
|
||||
gsl_matrix_complex_set_identity(Eye);
|
||||
gsl_vector_complex *Lambda = gsl_vector_complex_alloc(K); // Eigenvalues
|
||||
gsl_matrix_complex *S = gsl_matrix_complex_alloc(K,K); // Eigenvectors
|
||||
|
||||
// FIXME general complex eigensystems not supported by GSL (use LAPACKE_zgee?)
|
||||
gsl_eigen_genv_workspace * W = gsl_eigen_genv_alloc(K);
|
||||
gsl_eigen_genv(B, Eye, alph, beta, S,W);
|
||||
gsl_eigen_genv_free(W);
|
||||
//gsl_eigen_genv_workspace * W = gsl_eigen_genv_alloc(K);
|
||||
//gsl_eigen_genv(B, Eye, alph, beta, S,W);
|
||||
//gsl_eigen_genv_free(W);
|
||||
QPMS_ENSURE(Sigma->stride == 1, "Sigma vector stride must be 1 for LAPACKE_zgesdd, got %zd.", Sigma->stride);
|
||||
QPMS_ENSURE(Lambda->stride == 1, "Lambda vector stride must be 1 for LAPACKE_zgesdd, got %zd.", Sigma->stride);
|
||||
QPMS_ENSURE_SUCCESS(LAPACKE_zgeev(
|
||||
LAPACK_ROW_MAJOR,
|
||||
'N' /* jobvl; don't compute left eigenvectors */,
|
||||
'V' /* jobvr; do compute right eigenvectors */,
|
||||
K /* n */,
|
||||
(lapack_complex_double *)(S->data) /* a */,
|
||||
S->tda /* lda */,
|
||||
(lapack_complex_double *) Lambda->data /* w */,
|
||||
NULL /* vl */,
|
||||
0 /* ldvl */,
|
||||
(lapack_complex_double *)(B->data)/* vr */,
|
||||
B->tda/* ldvr */
|
||||
));
|
||||
|
||||
gsl_complex tmpa;
|
||||
gsl_complex tmpb;
|
||||
for(int i = 0; i < K; i++){
|
||||
tmpb = gsl_vector_complex_get(beta,i);
|
||||
tmpa = gsl_vector_complex_get(alph,i);
|
||||
if(gsl_complex_abs(tmpb)){
|
||||
gsl_vector_complex_set(Lambda, i, gsl_complex_div(tmpa,tmpb));
|
||||
printf("Eigenvalue %e + %e i found\n",GSL_REAL(gsl_complex_div(tmpa,tmpb)), GSL_IMAG(gsl_complex_div(tmpa,tmpb)));
|
||||
} else{
|
||||
printf("Beta %d is zero \n",i);
|
||||
}
|
||||
if(!gsl_complex_abs(tmpa)){
|
||||
printf("Alpha %d is zero \n",i);
|
||||
}
|
||||
}
|
||||
|
||||
gsl_vector_complex_free(alph);
|
||||
gsl_vector_complex_free(beta);
|
||||
gsl_matrix_complex_free(Eye);
|
||||
|
||||
//B.NSEig(&Lambda, &S);
|
||||
|
||||
|
||||
// V0S <- V0*S
|
||||
printf("Multiplying V0*S...\n");
|
||||
|
||||
gsl_vector_complex *V = gsl_vector_complex_alloc(K);
|
||||
gsl_vector_complex *s = gsl_vector_complex_alloc(K);
|
||||
|
||||
printf("Evaluating retained values \n");
|
||||
int KRetained=0;
|
||||
gsl_vector_complex * om = gsl_vector_complex_alloc(1);
|
||||
for(int k=0; k<K; k++)
|
||||
{
|
||||
if(gsl_complex_abs(gsl_vector_complex_get(Lambda,k))){
|
||||
gsl_complex tmp_c = gsl_vector_complex_get(Lambda, k);
|
||||
double complex z = z0 + GSL_REAL(tmp_c) + GSL_IMAG(tmp_c)*I;
|
||||
//gsl_matrix_get_col(V, V0S, k);
|
||||
gsl_matrix_complex_get_col(s, S, k);
|
||||
gsl_blas_zgemv(CblasNoTrans, one, V0, s, zero, V);
|
||||
gsl_matrix_complex *V0S = gsl_matrix_complex_alloc(M, K);
|
||||
QPMS_ENSURE_SUCCESS(gsl_blas_zgemm(CblasNoTrans, CblasNoTrans,
|
||||
one, V0, S, zero, V0S));
|
||||
|
||||
|
||||
double Residual=0.0;
|
||||
if (ResTol>0.0)
|
||||
{ /*gsl_matrix_complex Vk(M,1,V);
|
||||
gsl_matrix_complex MVk(M,1,MLBuffers[0]);
|
||||
UserFunc(z, Params, &Vk, &MVk);
|
||||
Residual=VecNorm(MVk.ZM, M);
|
||||
*/
|
||||
gsl_vector_complex_set(om,1,tmp_c);
|
||||
Residual = min_sing(om,Params); // in unitcell.c
|
||||
if (1) printf("Beyn: Residual(%i)=%e\n",k,Residual);
|
||||
|
||||
int KRetained = 0;
|
||||
gsl_matrix_complex *Mmat = gsl_matrix_complex_alloc(M,L);
|
||||
gsl_vector_complex *MVk = gsl_vector_complex_alloc(M);
|
||||
for (int k = 0; k < K; ++k) {
|
||||
const gsl_complex zgsl = gsl_complex_add(gsl_complex_rect(creal(z0), cimag(z0)), gsl_vector_complex_get(Lambda, k));
|
||||
const complex double z = GSL_REAL(zgsl) + I*GSL_IMAG(zgsl);
|
||||
gsl_vector_complex_const_view Vk = gsl_matrix_complex_const_column(V0S, k);
|
||||
|
||||
double residual = 0;
|
||||
if(ResTol > 0) {
|
||||
QPMS_ENSURE_SUCCESS(M_function(Mmat, z, Params));
|
||||
QPMS_ENSURE_SUCCESS(gsl_blas_zgemv(CblasNoTrans, one, Mmat, &(Vk.vector), zero, MVk));
|
||||
residual = gsl_blas_dznrm2(MVk);
|
||||
if (Verbose) printf("Beyn: Residual(%i)=%e\n",k,residual);
|
||||
}
|
||||
if (ResTol>0.0 && Residual>ResTol) continue;
|
||||
if (ResTol > 0 && residual > ResTol) continue;
|
||||
|
||||
//Eigenvalues->SetEntry(KRetained, z);
|
||||
gsl_vector_complex_set(Eigenvalues, KRetained, tmp_c);
|
||||
gsl_matrix_complex_set_col(Eigenvectors, KRetained, V);
|
||||
/*if (Eigenvectors)
|
||||
{
|
||||
//Eigenvectors->SetEntries(":", KRetained, V);
|
||||
//Solver->Residuals->SetEntry(KRetained,Residual);
|
||||
}
|
||||
*/
|
||||
KRetained++;
|
||||
gsl_vector_complex_set(Eigenvalues, KRetained, zgsl);
|
||||
if(Eigenvectors) {
|
||||
gsl_matrix_complex_set_col(Eigenvectors, KRetained, &(Vk.vector));
|
||||
gsl_vector_set(Solver->Residuals, KRetained, residual);
|
||||
}
|
||||
++KRetained;
|
||||
}
|
||||
|
||||
printf("%d eigenvalues found \n",KRetained);
|
||||
|
||||
gsl_matrix_complex_free(V0S);
|
||||
gsl_matrix_complex_free(Mmat);
|
||||
gsl_vector_complex_free(MVk);
|
||||
gsl_matrix_complex_free(S);
|
||||
gsl_matrix_complex_free(V0);
|
||||
gsl_vector_complex_free(Lambda);
|
||||
gsl_vector_complex_free(om);
|
||||
|
||||
return KRetained;
|
||||
}
|
||||
|
||||
|
@ -329,8 +317,8 @@ int ProcessAMatrices(BeynSolver *Solver, BeynFunction UserFunc,
|
|||
/***************************************************************/
|
||||
/***************************************************************/
|
||||
|
||||
int BeynSolve(BeynSolver *Solver,
|
||||
BeynFunction UserFunc, void *Params,
|
||||
int BeynSolve(BeynSolver *Solver, beyn_function_M_t M_function,
|
||||
beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *Params,
|
||||
double complex z0, double Rx, double Ry, int N)
|
||||
{
|
||||
/***************************************************************/
|
||||
|
@ -380,7 +368,12 @@ int BeynSolve(BeynSolver *Solver,
|
|||
// Tän pitäis kutsua eval_WT
|
||||
// Output ilmeisesti tallentuun neljänteen parametriin
|
||||
|
||||
UserFunc(z0+zz, Params, VHat, MInvVHat);
|
||||
if(M_inv_Vhat_function) {
|
||||
QPMS_ENSURE_SUCCESS(M_inv_Vhat_function(MInvVHat, VHat, z0+zz, Params));
|
||||
} else {
|
||||
QPMS_NOT_IMPLEMENTED("TODO");
|
||||
}
|
||||
//UserFunc(z0+zz, Params, VHat, MInvVHat);
|
||||
|
||||
gsl_matrix_complex_scale(MInvVHat, dz);
|
||||
gsl_matrix_complex_add(A0, MInvVHat);
|
||||
|
@ -401,7 +394,7 @@ int BeynSolve(BeynSolver *Solver,
|
|||
//gsl_vector_complex *EVErrors = Solver->EVErrors;
|
||||
gsl_matrix_complex *Eigenvectors = Solver->Eigenvectors;
|
||||
|
||||
int K = ProcessAMatrices(Solver, UserFunc, Params, A0, A1, z0, Eigenvalues, Eigenvectors);
|
||||
int K = ProcessAMatrices(Solver, M_function, Params, A0, A1, z0, Eigenvalues, Eigenvectors);
|
||||
//int KCoarse = ProcessAMatrices(Solver, UserFunc, Params, A0Coarse, A1Coarse, z0, EVErrors, Eigenvectors);
|
||||
// Log("{K,KCoarse}={%i,%i}",K,KCoarse);
|
||||
/*
|
||||
|
|
29
qpms/beyn.h
29
qpms/beyn.h
|
@ -31,24 +31,15 @@
|
|||
#ifndef BEYN_H
|
||||
#define BEYN_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <stdarg.h>
|
||||
#include <fenv.h>
|
||||
|
||||
#include <complex.h>
|
||||
|
||||
// Needs to be changed to gsl or something
|
||||
//#include <libhmat.h>
|
||||
|
||||
#include <gsl/gsl_matrix.h>
|
||||
/***************************************************************/
|
||||
/* prototype for user-supplied function passed to BeynMethod. */
|
||||
/* The user's function should replace VHat with */
|
||||
/* Inverse[ M(z) ] * VHat. */
|
||||
/***************************************************************/
|
||||
typedef void (*BeynFunction)(double complex z, void *Params, gsl_matrix_complex *VHat, gsl_matrix_complex *MVHat);
|
||||
|
||||
/// User-supplied function that provides the operator M(z) whose "roots" are to be found.
|
||||
typedef int (*beyn_function_M_t)(gsl_matrix_complex *target_M, complex double z, void *params);
|
||||
|
||||
/// (optional) User-supplied function that, given \f$ \hat V \f$, calculates \f$ M(z)^{-1} \hat V \f$.
|
||||
typedef int (*beyn_function_M_inv_Vhat_t)(gsl_matrix_complex *target_M_inv_Vhat,
|
||||
const gsl_matrix_complex *Vhat, complex double z, void *params);
|
||||
|
||||
/***************************************************************/
|
||||
/***************************************************************/
|
||||
|
@ -58,11 +49,11 @@ typedef struct BeynSolver
|
|||
int M; // dimension of matrices
|
||||
int L; // number of columns of VHat matrix
|
||||
|
||||
gsl_vector_complex *Eigenvalues, *EVErrors, *Residuals;
|
||||
gsl_vector_complex *Eigenvalues, *EVErrors;
|
||||
gsl_matrix_complex *Eigenvectors;
|
||||
gsl_matrix_complex *A0, *A1, *A0Coarse, *A1Coarse, *MInvVHat;
|
||||
gsl_matrix_complex *VHat;
|
||||
gsl_vector *Sigma;
|
||||
gsl_vector *Sigma, *Residuals;
|
||||
double complex *Workspace;
|
||||
|
||||
} BeynSolver;
|
||||
|
@ -89,7 +80,7 @@ void ReRandomize(BeynSolver *Solver, unsigned int RandSeed);
|
|||
// Beyn method for elliptical contour of horizontal, vertical
|
||||
// radii Rx, Ry, centered at z0, using N quadrature points
|
||||
int BeynSolve(BeynSolver *Solver,
|
||||
BeynFunction UserFunction, void *Params,
|
||||
beyn_function_M_t M_function, beyn_function_M_inv_Vhat_t M_inv_Vhat_function, void *params,
|
||||
double complex z0, double Rx, double Ry, int N);
|
||||
|
||||
#endif // BEYN_H
|
||||
|
|
Loading…
Reference in New Issue