Additional symmetries

Former-commit-id: dce9d43c0bfbce7166e6365f40591fbf5f9b4873
This commit is contained in:
Marek Nečada 2019-03-12 21:22:31 +02:00
parent a2e61ad67a
commit 6f66ddc845
4 changed files with 478 additions and 200 deletions

View File

@ -53,7 +53,7 @@ class SVWFPointGroupInfo: # only for point groups, coz in svwf_rep() I use I_tyt
self.svwf_rep_gen_func = svwf_rep_gen_func
self.irreps = dict()
for irrepname, irrepgens in irrepgens_dict.items():
is1d = isinstance(irrepgens[0], int)
is1d = isinstance(irrepgens[0], (int,float,complex))
irrepdim = 1 if is1d else irrepgens[0].shape[0]
self.irreps[irrepname] = generate_grouprep(self.permgroup,
1 if is1d else np.eye(irrepdim),
@ -495,6 +495,24 @@ point_group_info = { # representation info of some useful point groups
qpms.IRot3.identity(),
)
),
'C2' : SVWFPointGroupInfo('C2',
# permutation group generators
(Permutation(0,1), # 180 deg rotation around z axis
),
# dictionary with irrep generators
{
# Bradley, Cracknell p. 57;
'A': (1,),
'B': (-1,),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.zrotN_tyty(2, lMax),),
# quaternion rep generators
rep3d_gens = (
qpms.IRot3.zrotN(2),
)
),
'C2v' : SVWFPointGroupInfo('C2v',
# permutation group generators
(Permutation(0,1, size=4)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
@ -546,6 +564,24 @@ point_group_info = { # representation info of some useful point groups
qpms.IRot3.zflip(),
)
),
'C4' : SVWFPointGroupInfo('C4',
# permutation group generators
(Permutation(0,1,2,3, size=4),), #C4 rotation
# dictionary with irrep generators
{
# Bradley, Cracknell p. 58
'A': (1,),
'B': (-1,),
'1E': (-1j,),
'2E': (1j,),
},
# function that generates a tuple with svwf representation generators
lambda lMax : (qpms.zrotN_tyty(4, lMax), ),
# quaternion rep generators
rep3d_gens = (
qpms.IRot3.zrotN(4),
)
),
'C4v' : SVWFPointGroupInfo('C4v',
# permutation group generators
(Permutation(0,1,2,3, size=4), #C4 rotation
@ -621,4 +657,41 @@ point_group_info = { # representation info of some useful point groups
qpms.IRot3.zflip(),
)
),
'x_and_z_flip': SVWFPointGroupInfo(
'x_and_z_flip',
(
Permutation(0,1, size=4), # x -> -x mirror op
Permutation(2,3, size=4), # z -> -z mirror op
),
{
"P'": (1, 1),
"R'": (-1, 1),
"P''": (-1,-1),
"R''": (1, -1),
},
lambda lMax : (qpms.xflip_tyty(lMax), qpms.zflip_tyty(lMax)),
rep3d_gens = (
qpms.IRot3.xflip(),
qpms.IRot3.zflip(),
)
),
'y_and_z_flip': SVWFPointGroupInfo(
'y_and_z_flip',
(
Permutation(0,1, size=4), # y -> -y mirror op
Permutation(2,3, size=4), # z -> -z mirror op
),
{
"P'": (1, 1),
"R'": (-1, 1),
"P''": (-1,-1),
"R''": (1, -1),
},
lambda lMax : (qpms.yflip_tyty(lMax), qpms.zflip_tyty(lMax)),
rep3d_gens = (
qpms.IRot3.yflip(),
qpms.IRot3.zflip(),
)
),
}

View File

@ -2,7 +2,8 @@
from qpms.symmetries import point_group_info
codestring = "#include <qpms/groups.h>\n"
for name, info in point_group_info.items():
for name in sorted(point_group_info.keys()):
info = point_group_info[name]
codestring += 'const qpms_finite_group_t QPMS_FINITE_GROUP_%s = ' %name
codestring += info.generate_c_source()
codestring += ";\n\n"

View File

@ -1,4 +1,42 @@
#include "staticgroups.h"
#include <qpms/groups.h>
const qpms_finite_group_t QPMS_FINITE_GROUP_C2 = {
"C2", // name
2, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1,
1, 0,
},
(qpms_gmi_t[]) { // invi
0, 1
},
(qpms_gmi_t[]) {1}, // gens
1, // ngens
(qpms_permutation_t[]){ // permrep
"(1)",
"(0 1)",
},
NULL, // elemlabels
2, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{6.123233995736766e-17+1.0*I, 0.0+0.0*I}, 1},
},
2, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"B", //name
(complex double []) {1, -1} // m
},
{
1, // dim
"A", //name
(complex double []) {1, 1} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_C2v = {
"C2v", // name
4, // order
@ -35,6 +73,11 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_C2v = {
"A1", //name
(complex double []) {1, 1, 1, 1} // m
},
{
1, // dim
"A2", //name
(complex double []) {1, -1, 1, -1} // m
},
{
1, // dim
"B2", //name
@ -45,10 +88,241 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_C2v = {
"B1", //name
(complex double []) {1, 1, -1, -1} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_C4 = {
"C4", // name
4, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3,
1, 2, 3, 0,
2, 3, 0, 1,
3, 0, 1, 2,
},
(qpms_gmi_t[]) { // invi
0, 3, 2, 1
},
(qpms_gmi_t[]) {1}, // gens
1, // ngens
(qpms_permutation_t[]){ // permrep
"(3)",
"(0 1 2 3)",
"(0 2)(1 3)",
"(0 3 2 1)",
},
NULL, // elemlabels
4, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
{{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
{{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
},
4, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"B", //name
(complex double []) {1, -1, 1, -1} // m
},
{
1, // dim
"2E", //name
(complex double []) {1, 1j, (-1+0j), (-0-1j)} // m
},
{
1, // dim
"A", //name
(complex double []) {1, 1, 1, 1} // m
},
{
1, // dim
"1E", //name
(complex double []) {1, -1j, (-1+0j), 1j} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_C4v = {
"C4v", // name
8, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 0, 7, 4, 5, 6,
2, 3, 0, 1, 6, 7, 4, 5,
3, 0, 1, 2, 5, 6, 7, 4,
4, 5, 6, 7, 0, 1, 2, 3,
5, 6, 7, 4, 3, 0, 1, 2,
6, 7, 4, 5, 2, 3, 0, 1,
7, 4, 5, 6, 1, 2, 3, 0,
},
(qpms_gmi_t[]) { // invi
0, 3, 2, 1, 4, 5, 6, 7
},
(qpms_gmi_t[]) {1, 7}, // gens
2, // ngens
(qpms_permutation_t[]){ // permrep
"(3)",
"(0 1 2 3)",
"(0 2)(1 3)",
"(0 3 2 1)",
"(3)(0 2)",
"(0 3)(1 2)",
"(1 3)",
"(0 1)(2 3)",
},
NULL, // elemlabels
4, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
{{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
{{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 0.7071067811865477-0.7071067811865474*I}, -1},
{{0.0+0.0*I, 1.0+2.220446049250313e-16*I}, -1},
{{0.0+0.0*I, 0.7071067811865475+0.7071067811865476*I}, -1},
{{0.0+0.0*I, 0.0+1.0*I}, -1},
},
5, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"A1", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"A2", //name
(complex double []) {1, -1, 1, -1} // m
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
},
{
2, // dim
"E", //name
(complex double []) {
// (3)
1.0, 0.0,
0.0, 1.0,
// (0 1 2 3)
0.0, -1.0,
1.0, 0.0,
// (0 2)(1 3)
-1.0, 0.0,
0.0, -1.0,
// (0 3 2 1)
0.0, 1.0,
-1.0, 0.0,
// (3)(0 2)
0.0, 1.0,
1.0, 0.0,
// (0 3)(1 2)
1.0, 0.0,
0.0, -1.0,
// (1 3)
0.0, -1.0,
-1.0, 0.0,
// (0 1)(2 3)
-1.0, 0.0,
0.0, 1.0,
}
},
{
1, // dim
"B2", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
},
{
1, // dim
"B1", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_D2h = {
"D2h", // name
8, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3, 4, 5, 6, 7,
1, 0, 3, 2, 5, 4, 7, 6,
2, 3, 0, 1, 6, 7, 4, 5,
3, 2, 1, 0, 7, 6, 5, 4,
4, 5, 6, 7, 0, 1, 2, 3,
5, 4, 7, 6, 1, 0, 3, 2,
6, 7, 4, 5, 2, 3, 0, 1,
7, 6, 5, 4, 3, 2, 1, 0,
},
(qpms_gmi_t[]) { // invi
0, 1, 2, 3, 4, 5, 6, 7
},
(qpms_gmi_t[]) {1, 3, 7}, // gens
3, // ngens
(qpms_permutation_t[]){ // permrep
"(5)",
"(5)(0 1)(2 3)",
"(5)(0 2)(1 3)",
"(5)(0 3)(1 2)",
"(0 3)(1 2)(4 5)",
"(0 2)(1 3)(4 5)",
"(0 1)(2 3)(4 5)",
"(4 5)",
},
NULL, // elemlabels
6, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 0.0+1.0*I}, -1},
{{0.0+1.0*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 1.0+0.0*I}, -1},
{{0.0+0.0*I, 0.0+1.0*I}, 1},
{{-1.0+0.0*I, 0.0+0.0*I}, -1},
{{0.0+0.0*I, -1.0+0.0*I}, 1},
{{0.0+1.0*I, 0.0+0.0*I}, -1},
},
8, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"A2\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
},
{
1, // dim
"B1\'", //name
(complex double []) {1, 1, -1, -1, -1, -1, 1, 1} // m
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
},
{
1, // dim
"B2\'", //name
(complex double []) {1, -1, -1, 1, 1, -1, -1, 1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
},
{
1, // dim
"B2\'\'", //name
(complex double []) {1, 1, -1, -1, 1, 1, -1, -1} // m
},
{
1, // dim
"B1\'\'", //name
(complex double []) {1, -1, -1, 1, -1, 1, 1, -1} // m
},
} // end of irreps
};
@ -108,6 +382,11 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D3h = {
},
6, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"A2\'", //name
(complex double []) {1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1} // m
},
{
2, // dim
"E\'", //name
@ -150,6 +429,21 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D3h = {
0.0, 0.9999999999999996,
}
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1} // m
},
{
2, // dim
"E\'\'", //name
@ -192,26 +486,6 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D3h = {
0.0, -0.9999999999999996,
}
},
{
1, // dim
"A2\'", //name
(complex double []) {1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1} // m
},
} // end of irreps
};
@ -284,8 +558,13 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D4h = {
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"B1\'\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1} // m
"A2\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1} // m
},
{
1, // dim
"B1\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1} // m
},
{
2, // dim
@ -341,6 +620,36 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D4h = {
0.0, 1.0,
}
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1} // m
},
{
1, // dim
"B2\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1} // m
},
{
1, // dim
"B2\'\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1} // m
},
{
1, // dim
"B1\'\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1} // m
},
{
2, // dim
"E\'\'", //name
@ -395,41 +704,6 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_D4h = {
0.0, -1.0,
}
},
{
1, // dim
"B1\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1} // m
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1} // m
},
{
1, // dim
"B2\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1} // m
},
{
1, // dim
"A2\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1} // m
},
{
1, // dim
"B2\'\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // m
},
} // end of irreps
};
@ -463,184 +737,110 @@ const qpms_finite_group_t QPMS_FINITE_GROUP_trivial_g = {
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_C4v = {
"C4v", // name
8, // order
const qpms_finite_group_t QPMS_FINITE_GROUP_x_and_z_flip = {
"x_and_z_flip", // name
4, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 0, 7, 4, 5, 6,
2, 3, 0, 1, 6, 7, 4, 5,
3, 0, 1, 2, 5, 6, 7, 4,
4, 5, 6, 7, 0, 1, 2, 3,
5, 6, 7, 4, 3, 0, 1, 2,
6, 7, 4, 5, 2, 3, 0, 1,
7, 4, 5, 6, 1, 2, 3, 0,
0, 1, 2, 3,
1, 0, 3, 2,
2, 3, 0, 1,
3, 2, 1, 0,
},
(qpms_gmi_t[]) { // invi
0, 3, 2, 1, 4, 5, 6, 7
0, 1, 2, 3
},
(qpms_gmi_t[]) {1, 7}, // gens
(qpms_gmi_t[]) {1, 3}, // gens
2, // ngens
(qpms_permutation_t[]){ // permrep
"(3)",
"(0 1 2 3)",
"(0 2)(1 3)",
"(0 3 2 1)",
"(3)(0 2)",
"(0 3)(1 2)",
"(1 3)",
"(3)(0 1)",
"(0 1)(2 3)",
"(2 3)",
},
NULL, // elemlabels
4, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.7071067811865476+0.7071067811865475*I, 0.0+0.0*I}, 1},
{{2.220446049250313e-16+1.0*I, 0.0+0.0*I}, 1},
{{-0.7071067811865474+0.7071067811865477*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 0.7071067811865477-0.7071067811865474*I}, -1},
{{0.0+0.0*I, 1.0+2.220446049250313e-16*I}, -1},
{{0.0+0.0*I, 0.7071067811865475+0.7071067811865476*I}, -1},
{{0.0+0.0*I, 0.0+1.0*I}, -1},
},
5, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
2, // dim
"E", //name
(complex double []) {
// (3)
1.0, 0.0,
0.0, 1.0,
// (0 1 2 3)
0.0, -1.0,
1.0, 0.0,
// (0 2)(1 3)
-1.0, 0.0,
0.0, -1.0,
// (0 3 2 1)
0.0, 1.0,
-1.0, 0.0,
// (3)(0 2)
0.0, 1.0,
1.0, 0.0,
// (0 3)(1 2)
1.0, 0.0,
0.0, -1.0,
// (1 3)
0.0, -1.0,
-1.0, 0.0,
// (0 1)(2 3)
-1.0, 0.0,
0.0, 1.0,
}
},
{
1, // dim
"A1", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
},
{
1, // dim
"B2", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
},
{
1, // dim
"B1", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
},
{
1, // dim
"A2", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_D2h = {
"D2h", // name
8, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3, 4, 5, 6, 7,
1, 0, 3, 2, 5, 4, 7, 6,
2, 3, 0, 1, 6, 7, 4, 5,
3, 2, 1, 0, 7, 6, 5, 4,
4, 5, 6, 7, 0, 1, 2, 3,
5, 4, 7, 6, 1, 0, 3, 2,
6, 7, 4, 5, 2, 3, 0, 1,
7, 6, 5, 4, 3, 2, 1, 0,
},
(qpms_gmi_t[]) { // invi
0, 1, 2, 3, 4, 5, 6, 7
},
(qpms_gmi_t[]) {1, 3, 7}, // gens
3, // ngens
(qpms_permutation_t[]){ // permrep
"(5)",
"(5)(0 1)(2 3)",
"(5)(0 2)(1 3)",
"(5)(0 3)(1 2)",
"(0 3)(1 2)(4 5)",
"(0 2)(1 3)(4 5)",
"(0 1)(2 3)(4 5)",
"(4 5)",
},
NULL, // elemlabels
6, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 0.0+1.0*I}, -1},
{{0.0+1.0*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 1.0+0.0*I}, -1},
{{0.0+0.0*I, 0.0+1.0*I}, 1},
{{-1.0+0.0*I, 0.0+0.0*I}, -1},
{{0.0+0.0*I, -1.0+0.0*I}, 1},
{{0.0+1.0*I, 0.0+0.0*I}, -1},
},
8, // nirreps
4, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"B1\'\'", //name
(complex double []) {1, -1, -1, 1, -1, 1, 1, -1} // m
"P\'\'", //name
(complex double []) {1, -1, 1, -1} // m
},
{
1, // dim
"A2\'\'", //name
(complex double []) {1, 1, 1, 1, -1, -1, -1, -1} // m
"P\'", //name
(complex double []) {1, 1, 1, 1} // m
},
{
1, // dim
"B1\'", //name
(complex double []) {1, 1, -1, -1, -1, -1, 1, 1} // m
"R\'\'", //name
(complex double []) {1, 1, -1, -1} // m
},
{
1, // dim
"A2\'", //name
(complex double []) {1, -1, 1, -1, -1, 1, -1, 1} // m
"R\'", //name
(complex double []) {1, -1, -1, 1} // m
},
} // end of irreps
};
const qpms_finite_group_t QPMS_FINITE_GROUP_y_and_z_flip = {
"y_and_z_flip", // name
4, // order
0, // idi
(qpms_gmi_t[]) { // mt
0, 1, 2, 3,
1, 0, 3, 2,
2, 3, 0, 1,
3, 2, 1, 0,
},
(qpms_gmi_t[]) { // invi
0, 1, 2, 3
},
(qpms_gmi_t[]) {1, 3}, // gens
2, // ngens
(qpms_permutation_t[]){ // permrep
"(3)",
"(3)(0 1)",
"(0 1)(2 3)",
"(2 3)",
},
NULL, // elemlabels
4, // permrep_nelem
(qpms_irot3_t[]) { // rep3d
{{1.0+0.0*I, 0.0+0.0*I}, 1},
{{0.0+0.0*I, 1.0+0.0*I}, -1},
{{0.0+0.0*I, 0.0+1.0*I}, 1},
{{0.0+1.0*I, 0.0+0.0*I}, -1},
},
4, // nirreps
(struct qpms_finite_group_irrep_t[]) { // irreps
{
1, // dim
"P\'\'", //name
(complex double []) {1, -1, 1, -1} // m
},
{
1, // dim
"A1\'\'", //name
(complex double []) {1, -1, 1, -1, 1, -1, 1, -1} // m
"P\'", //name
(complex double []) {1, 1, 1, 1} // m
},
{
1, // dim
"B2\'", //name
(complex double []) {1, -1, -1, 1, 1, -1, -1, 1} // m
"R\'\'", //name
(complex double []) {1, 1, -1, -1} // m
},
{
1, // dim
"B2\'\'", //name
(complex double []) {1, 1, -1, -1, 1, 1, -1, -1} // m
},
{
1, // dim
"A1\'", //name
(complex double []) {1, 1, 1, 1, 1, 1, 1, 1} // m
"R\'", //name
(complex double []) {1, -1, -1, 1} // m
},
} // end of irreps
};

View File

@ -1,10 +1,14 @@
#ifndef STATICGROUPS_H
#define STATICGROUPS_H
#include <qpms/groups.h>
extern const qpms_finite_group_t QPMS_FINITE_GROUP_C2;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_C2v;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_trivial_g;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_C4;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_C4v;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_D3h;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_D2h;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_D4h;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_x_and_z_flip;
extern const qpms_finite_group_t QPMS_FINITE_GROUP_y_and_z_flip;
#endif