Example of symmetry action in lattices, fig draft.
Former-commit-id: c2daba3042f5d17171fe51a0267583c934e3205c
This commit is contained in:
parent
64fdeb893e
commit
705e61053f
Binary file not shown.
After Width: | Height: | Size: 136 KiB |
Binary file not shown.
After Width: | Height: | Size: 136 KiB |
|
@ -712,15 +712,15 @@ This means that the field expansion coefficients
|
|||
transform as
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\rcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \overset{g}{\longmapsto}\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
Obviously, the expansion coefficients belonging to particles in different
|
||||
orbits do not mix together.
|
||||
As before, we introduce a short-hand block-matrix notation for
|
||||
As before, we introduce a short-hand pairwise matrix notation for
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:excitation coefficient under symmetry operation"
|
||||
|
@ -730,14 +730,23 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
(TODO avoid notation clash here in a more consistent and readable way!)
|
||||
(TODO avoid notation clash here in a more consistent and readable way!
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\rcoeffp{\pi_{g}^{-1}(p)},\nonumber \\
|
||||
\outcoeffp p & \overset{g}{\longmapsto}\tilde{J}\left(g\right)\outcoeffp{\pi_{g}^{-1}(p)},\label{eq:excitation coefficient under symmetry operation matrix form}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
and also a global block-matrix form
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\rcoeff & \mapsto J\left(g\right)a,\nonumber \\
|
||||
\outcoeff & \mapsto J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
|
||||
\rcoeff & \overset{g}{\longmapsto}J\left(g\right)a,\nonumber \\
|
||||
\outcoeff & \overset{g}{\longmapsto}J\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation global block form}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -1134,7 +1143,8 @@ The transformation to the symmetry adapted basis
|
|||
\begin_inset Formula $J(g)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
: this can happen if the point group symmetry maps some of the scatterers
|
||||
from the reference unit cell to scatterers belonging to other unit cells.
|
||||
This is illustrated in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
|
@ -1147,14 +1157,232 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "Phase factor illustration"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
a shows a hexagonal periodic array with
|
||||
\begin_inset Formula $p6m$
|
||||
\end_inset
|
||||
|
||||
wallpaper group symmetry, with lattice vectors
|
||||
\begin_inset Formula $\vect a_{1}=\left(a,0\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\vect a_{2}=\left(a/2,\sqrt{3}a/2\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
If we delimit our representative unit cell as the Wigner-Seitz cell with
|
||||
origin in a
|
||||
\begin_inset Formula $D_{6}$
|
||||
\end_inset
|
||||
|
||||
point group symmetry center (there is one per each unit cell).
|
||||
Per unit cell, there are five different particles placed on the unit cell
|
||||
boundary, and we need to make a choice to which unit cell the particles
|
||||
on the boundary belong; in our case, we choose that a unit cell includes
|
||||
the particles on the left as denoted by different colors.
|
||||
If the Bloch vector is at the upper
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
point,
|
||||
\begin_inset Formula $\vect k=\vect M_{1}=\left(0,2\pi/\sqrt{3}a\right)$
|
||||
\end_inset
|
||||
|
||||
, it creates a relative phase of
|
||||
\begin_inset Formula $\pi$
|
||||
\end_inset
|
||||
|
||||
between the unit cell rows, and the original
|
||||
\begin_inset Formula $D_{6}$
|
||||
\end_inset
|
||||
|
||||
symmetry is reduced to
|
||||
\begin_inset Formula $D_{2}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
horizontal
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
mirror operation
|
||||
\begin_inset Formula $\sigma_{xz}$
|
||||
\end_inset
|
||||
|
||||
maps, acording to our boundary division, all the particles only inside
|
||||
the same unit cell, e.g.
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
as in eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:excitation coefficient under symmetry operation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
However, both the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
vertical
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
mirroring
|
||||
\begin_inset Formula $\sigma_{yz}$
|
||||
\end_inset
|
||||
|
||||
and the
|
||||
\begin_inset Formula $C_{2}$
|
||||
\end_inset
|
||||
|
||||
rotation map the boundary particles onto the boundaries that do not belong
|
||||
to the reference unit cell with
|
||||
\begin_inset Formula $\vect n=\left(0,0\right)$
|
||||
\end_inset
|
||||
|
||||
, so we have, explicitly writing down also the lattice point indices
|
||||
\begin_inset Formula $\vect n$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
but we want
|
||||
\begin_inset Formula $J(g)$
|
||||
\end_inset
|
||||
|
||||
to operate only inside one unit cell, so we use the Bloch condition
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\end_inset
|
||||
|
||||
: in this case, we have
|
||||
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect 0\alpha}e^{i0}=\outcoeffp{\vect 0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect 0\alpha}=e^{i\pi}\outcoeffp{\vect 0\alpha}=-\outcoeffp{\vect 0\alpha},$
|
||||
\end_inset
|
||||
|
||||
so
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0C}.
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
If we set instead
|
||||
\begin_inset Formula $\vect k=\vect K=\left(4\pi/3a,0\right),$
|
||||
\end_inset
|
||||
|
||||
the original
|
||||
\begin_inset Formula $D_{6}$
|
||||
\end_inset
|
||||
|
||||
point group symmetry reduces to
|
||||
\begin_inset Formula $D_{3}$
|
||||
\end_inset
|
||||
|
||||
and the unit cells can obtain a relative phase factor of
|
||||
\begin_inset Formula $e^{-2\pi i/3}$
|
||||
\end_inset
|
||||
|
||||
(blue) or
|
||||
\begin_inset Formula $e^{2\pi i/3}$
|
||||
\end_inset
|
||||
|
||||
(red).
|
||||
The
|
||||
\begin_inset Formula $\sigma_{xz}$
|
||||
\end_inset
|
||||
|
||||
mirror symmetry, as in the previous case, acts purely inside the reference
|
||||
unit cell with our boundary division.
|
||||
However, for a counterclockwise
|
||||
\begin_inset Formula $C_{3}$
|
||||
\end_inset
|
||||
|
||||
rotation, as an example we have
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0A},\\
|
||||
\outcoeff_{\vect 0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0B},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
because in this case, the Bloch condition gives
|
||||
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect 0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect 0\alpha}e^{2\pi i/3}=\outcoeffp{\vect 0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect 0\alpha}.$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename p6m_mpoint.png
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Graphics
|
||||
filename p6m_kpoint.png
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
@ -1174,10 +1402,6 @@ name "Phase factor illustration"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue