WIP mpzs_hh_t
Former-commit-id: 5df48ddb3c9aac26887c81c54d71b47173b9ec0d
This commit is contained in:
parent
c0ec5389e0
commit
706073315b
|
@ -72,27 +72,6 @@ void qpq_deriv(qpq_t *dPdx, const qpq_t *P);
|
|||
_Bool qpq_nonzero(const qpq_t *);
|
||||
|
||||
|
||||
/// Square root of a rational number.
|
||||
typedef struct mpqs_struct_t {
|
||||
mpq_t _2;
|
||||
} mpqs_t[1];
|
||||
|
||||
static inline void mpqs_init(mpqs_t q) {mpq_init(q->_2);}
|
||||
static inline void mpqs_clear(mpqs_t q) {mpq_clear(q->_2);}
|
||||
static inline void mpqs_mul(mpqs_t product, const mpqs_t multiplier, const mpqs_t multiplicand) {
|
||||
mpq_mul(product->_2, multiplier->_2, multiplicand->_2);
|
||||
}
|
||||
static inline void mpqs_div(mpqs_t quotient, const mpqs_t dividend, const mpqs_t divisor) {
|
||||
mpq_div(quotient->_2, dividend->_2, divisor->_2);
|
||||
}
|
||||
static inline void mpqs_set(mpqs_t copy, const mpqs_t orig) { mpq_set(copy->_2, orig->_2); }
|
||||
static inline void mpqs_set_mpq(mpqs_t qs, const mpq_t q) {
|
||||
mpq_mul(qs->_2, q, q);
|
||||
}
|
||||
static inline int mpqs_sgn(const mpqs_t q) { return mpq_sgn(q->_2); }
|
||||
static inline void mpqs_canonicalize(mpqs_t q) { mpq_canonicalize(q->_2); }
|
||||
static inline void mpqs_swap(mpqs_t a, mpqs_t b) { mpq_swap(a->_2, b->_2); }
|
||||
|
||||
/// Polynomial with rational square root coeffs.
|
||||
// TODO more docs about initialisation etc.
|
||||
typedef struct qpqs_t {
|
||||
|
@ -135,7 +114,7 @@ int qpqs_get_elem_si(long *numerator, unsigned long *denominator, const qpqs_t *
|
|||
/// Deinitialise the coefficients array in qpqs_t.
|
||||
void qpqs_clear(qpqs_t *p);
|
||||
|
||||
|
||||
#if 0
|
||||
/// Type representing a number of form \f$ a \sqrt{b}; a \in \ints, b \in \nats \f$.
|
||||
typedef struct _qp_mpzs {
|
||||
mpz_t _1; ///< The integer factor \f$ a \f$.
|
||||
|
@ -145,12 +124,25 @@ typedef struct _qp_mpzs {
|
|||
void mpzs_init(mpzs_t x);
|
||||
void mpzs_clear(mpzs_t x);
|
||||
void mpzs_set(mpzs_t x, const mpzs_t y);
|
||||
#endif
|
||||
|
||||
/// Type representing a number of form \f$ a \sqrt{b}; a \in \ints, b \in \nats \f$.
|
||||
/** This includes UT hash handle structure */
|
||||
typedef struct _qp_mpzs_hashed {
|
||||
mpz_t _1; ///< The integer factor \f$ a \f$.
|
||||
mpz_t _2; ///< The square-rooted factor \f$ b \f$. Always positive.
|
||||
UT_hash_handle hh;
|
||||
} mpzs_hh_t[1];
|
||||
|
||||
void mpzs_hh_init(mpzs_hh_t x);
|
||||
void mpzs_hh_clear(mpzs_hh_t x);
|
||||
void mpzs_hh_set(mpzs_hh_t x, const mpzs_hh_t y);
|
||||
|
||||
/// Sum of square roots of rational numbers.
|
||||
/// Represented as \f$ \sum_s a_i \sqrt{b_i} / d \f$.
|
||||
typedef struct _qp_mpqs {
|
||||
int sz; ///< Used size of the numtree.
|
||||
void *nt; ///< Numerator tree.
|
||||
mpzs_hh_t *nt; ///< List of numerator components..
|
||||
mpz_t den; ///< Denominator. Always positive.
|
||||
} mpqs_t[1];
|
||||
|
||||
|
|
Loading…
Reference in New Issue