Dispersion SVD universal script with nice argparsing
Former-commit-id: 613a092eb1dcbcf938e2777736a8758b1a7a6292
This commit is contained in:
parent
3e7af7d25e
commit
706701f9ce
|
@ -1,37 +1,92 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
# coding: utf-8
|
|
||||||
|
|
||||||
# In[1]:
|
import argparse
|
||||||
|
from scipy.constants import hbar, e as eV, pi, c
|
||||||
|
import random
|
||||||
|
|
||||||
translations_dir = '/l/necadam1/translations-precalc/diracpoints-newdata/222'
|
def make_action_sharedlist(opname, listname):
|
||||||
TMatrix_file ='/m/home/home4/46/necadam1/unix/tmatrix-experiments/twisted_triangle/silver/twisted_triangle.TMatrix.nonan'
|
class opAction(argparse.Action):
|
||||||
|
def __call__(self, parser, args, values, option_string=None):
|
||||||
|
if (not hasattr(args, listname)) or getattr(args, listname) is None:
|
||||||
|
setattr(args, listname, list())
|
||||||
|
getattr(args,listname).append((opname, values))
|
||||||
|
return opAction
|
||||||
|
|
||||||
pdfout = '/m/home/home4/46/necadam1/unix/tmp/pdf_out/inv-2-mag10-10.pdf'
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
|
||||||
|
parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
|
||||||
|
#sizepar = parser.add_mutually_exclusive_group(required=True)
|
||||||
|
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
|
||||||
|
parser.add_argument('--output', action='store', help='Path to output PDF')
|
||||||
|
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
|
||||||
|
parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview')
|
||||||
|
parser.add_argument('--eVmax', action='store', help='Skip frequencies above this value')
|
||||||
|
parser.add_argument('--eVmin', action='store', help='Skip frequencies below this value')
|
||||||
|
parser.add_argument('--kdensity', action='store', type=int, default=66, help='Number of k-points per x-axis segment')
|
||||||
|
#TODO some more sophisticated x axis definitions
|
||||||
|
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
|
||||||
|
parser.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'))
|
||||||
|
parser.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops'))
|
||||||
|
parser.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops'))
|
||||||
|
parser.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
|
||||||
|
parser.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops'))
|
||||||
|
parser.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops'))
|
||||||
|
#parser.add_argument('--mult', dest='ops', nargs='2', action=make_action_sharedlist('mult', 'ops'))
|
||||||
|
#parser.add_argument('--mult0', dest='ops', nargs='2', action=make_action_sharedlist('mult0', 'ops'))
|
||||||
|
#parser.add_argument('--mult1', dest='ops', nargs='2', action=make_action_sharedlist('mult1', 'ops'))
|
||||||
|
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
|
||||||
|
# TODO enable more flexible per-sublattice specification
|
||||||
|
pargs=parser.parse_args()
|
||||||
|
print(pargs)
|
||||||
|
|
||||||
hexside = 375e-9
|
|
||||||
epsilon_b = 2.3104
|
|
||||||
gaussianSigma = None # hexside * 222 / 7
|
|
||||||
|
|
||||||
factor13inc = 10
|
translations_dir = pargs.griddir
|
||||||
factor13scat=10
|
TMatrix_file = pargs.TMatrix
|
||||||
|
pdfout = pargs.output if pargs.output else (''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf')
|
||||||
|
print(pdfout)
|
||||||
|
|
||||||
ops = (
|
hexside = pargs.hexside #375e-9
|
||||||
# co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj),
|
epsilon_b = pargs.background_permittivity #2.3104
|
||||||
# co: 0, 1, (0,1), (0,), (1,), #NI: 'all'
|
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
|
||||||
# typ operace: sym, tr, copy
|
interpfreqfactor = pargs.frequency_multiplier
|
||||||
# specifikace:
|
kdensity = pargs.kdensity
|
||||||
# sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3',
|
minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None
|
||||||
# copy: 0, 1 (zdroj)
|
maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None
|
||||||
((0,1), 'sym', 'σ_z'),
|
skipfreq = pargs.sparse if pargs.sparse else None
|
||||||
#((0,1), 'sym', 'σ_x'),
|
|
||||||
#((0,1), 'sym', 'σ_y'),
|
|
||||||
((0,1), 'sym', 'C3'),
|
|
||||||
((1), 'tr', 'C2'),
|
|
||||||
|
|
||||||
)
|
# TODO multiplier operation definitions and parsing
|
||||||
|
#factor13inc = 10
|
||||||
|
#factor13scat=10
|
||||||
|
|
||||||
interpfreqfactor = 0.5
|
ops = list()
|
||||||
|
opre = re.compile('(tr|sym|copy|mult)(\d*)')
|
||||||
|
for oparg in pargs.ops:
|
||||||
|
opm = opre.match(oparg[0])
|
||||||
|
if opm:
|
||||||
|
ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1]))
|
||||||
|
else:
|
||||||
|
raise # should not happen
|
||||||
|
print(ops)
|
||||||
|
|
||||||
|
#ops = (
|
||||||
|
# # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj),
|
||||||
|
# # co: 0, 1, (0,1), (0,), (1,), #NI: 'all'
|
||||||
|
# # typ operace: sym, tr, copy
|
||||||
|
# # specifikace:
|
||||||
|
# # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3',
|
||||||
|
# # copy: 0, 1 (zdroj)
|
||||||
|
# ((0,1), 'sym', 'σ_z'),
|
||||||
|
# #((0,1), 'sym', 'σ_x'),
|
||||||
|
# #((0,1), 'sym', 'σ_y'),
|
||||||
|
# ((0,1), 'sym', 'C3'),
|
||||||
|
# ((1), 'tr', 'C2'),
|
||||||
|
#
|
||||||
|
#)
|
||||||
|
|
||||||
|
# -----------------finished basic CLI parsing (except for op arguments) ------------------
|
||||||
|
import time
|
||||||
|
begtime=time.time()
|
||||||
|
|
||||||
import qpms
|
import qpms
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -40,23 +95,14 @@ import warnings
|
||||||
import math
|
import math
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
from matplotlib.backends.backend_pdf import PdfPages
|
from matplotlib.backends.backend_pdf import PdfPages
|
||||||
from scipy.constants import hbar, e as eV, pi, c
|
|
||||||
from scipy import interpolate
|
from scipy import interpolate
|
||||||
nx = None
|
nx = None
|
||||||
s3 = math.sqrt(3)
|
s3 = math.sqrt(3)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
pdf = PdfPages(pdfout)
|
pdf = PdfPages(pdfout)
|
||||||
|
|
||||||
|
|
||||||
# In[2]:
|
|
||||||
|
|
||||||
#TODO později
|
|
||||||
#import argparse
|
|
||||||
#parser = argparse.ArgumentParser()
|
|
||||||
#parser.add_argument('--sym', 'mz', 'my', 'mx', 'C3', 'C2' type=str, help='symmetrize both particles')
|
|
||||||
#args = parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
# In[3]:
|
||||||
|
|
||||||
# specifikace T-matice zde
|
# specifikace T-matice zde
|
||||||
|
@ -82,13 +128,16 @@ TMč = č[(mč+nč+tč) % 2 == 1]
|
||||||
|
|
||||||
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
|
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
|
||||||
|
|
||||||
TMatrices[:,:,:,:,:,ny==3] *= factor13inc
|
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
|
||||||
TMatrices[:,:,:,ny==3,:,:] *= factor13scat
|
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
|
||||||
xfl = qpms.xflip_tyty(lMax)
|
xfl = qpms.xflip_tyty(lMax)
|
||||||
yfl = qpms.yflip_tyty(lMax)
|
yfl = qpms.yflip_tyty(lMax)
|
||||||
zfl = qpms.zflip_tyty(lMax)
|
zfl = qpms.zflip_tyty(lMax)
|
||||||
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
|
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
|
||||||
|
|
||||||
|
reCN = re.compile('(\d*)C(\d+)')
|
||||||
|
#TODO C nekonečno
|
||||||
|
|
||||||
for op in ops:
|
for op in ops:
|
||||||
if op[0] == 'all':
|
if op[0] == 'all':
|
||||||
targets = (0,1)
|
targets = (0,1)
|
||||||
|
@ -98,6 +147,7 @@ for op in ops:
|
||||||
targets = op[0]
|
targets = op[0]
|
||||||
|
|
||||||
if op[1] == 'sym':
|
if op[1] == 'sym':
|
||||||
|
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
|
||||||
if op[2] == 'σ_z':
|
if op[2] == 'σ_z':
|
||||||
for t in targets:
|
for t in targets:
|
||||||
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
|
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
|
||||||
|
@ -107,8 +157,11 @@ for op in ops:
|
||||||
elif op[2] == 'σ_x':
|
elif op[2] == 'σ_x':
|
||||||
for t in targets:
|
for t in targets:
|
||||||
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
|
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
|
||||||
elif op[2] == 'C3': # FIXME fuj fuj fuj, použij regex!!!
|
elif op[2] == 'C2': # special case of the latter
|
||||||
rotN = 3
|
for t in targets:
|
||||||
|
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
|
||||||
|
elif mCN:
|
||||||
|
rotN = int(mCN.group(2))
|
||||||
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
|
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
|
||||||
for t in targets:
|
for t in targets:
|
||||||
for i in range(rotN):
|
for i in range(rotN):
|
||||||
|
@ -117,12 +170,10 @@ for op in ops:
|
||||||
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
|
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
|
||||||
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
|
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
|
||||||
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
|
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
|
||||||
elif op[2] == 'C2':
|
|
||||||
for t in targets:
|
|
||||||
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
|
|
||||||
else:
|
else:
|
||||||
raise
|
raise
|
||||||
elif op[1] == 'tr':
|
elif op[1] == 'tr':
|
||||||
|
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
|
||||||
if op[2] == 'σ_z':
|
if op[2] == 'σ_z':
|
||||||
for t in targets:
|
for t in targets:
|
||||||
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
|
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
|
||||||
|
@ -132,22 +183,24 @@ for op in ops:
|
||||||
elif op[2] == 'σ_x':
|
elif op[2] == 'σ_x':
|
||||||
for t in targets:
|
for t in targets:
|
||||||
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
|
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
|
||||||
elif op[2] == 'C3': # TODO use regex and generalize
|
|
||||||
rotN = 3
|
|
||||||
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
|
|
||||||
for t in targets:
|
|
||||||
for i in range(rotN):
|
|
||||||
rotangle = 2*np.pi*i / rotN
|
|
||||||
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
|
|
||||||
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
|
|
||||||
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
|
|
||||||
elif op[2] == 'C2':
|
elif op[2] == 'C2':
|
||||||
for t in targets:
|
for t in targets:
|
||||||
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
|
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
|
||||||
elif op[1] == 'copy':
|
elif mCN:
|
||||||
raise
|
rotN = int(mCN.group(2))
|
||||||
|
power = int(mCN.group(1)) if mCN.group(1) else 1
|
||||||
|
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
|
||||||
|
for t in targets:
|
||||||
|
rotangle = 2*np.pi*power/rotN
|
||||||
|
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
|
||||||
|
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
|
||||||
|
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
|
||||||
else:
|
else:
|
||||||
raise
|
raise
|
||||||
|
elif op[1] == 'copy':
|
||||||
|
raise # not implemented
|
||||||
|
else:
|
||||||
|
raise #unknown operation; should not happen
|
||||||
|
|
||||||
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
|
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
|
||||||
|
|
||||||
|
@ -159,7 +212,7 @@ om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100)
|
||||||
TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem))
|
TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem))
|
||||||
f, axa = plt.subplots(2, 2, figsize=(15,15))
|
f, axa = plt.subplots(2, 2, figsize=(15,15))
|
||||||
|
|
||||||
print(TMatrices.shape)
|
#print(TMatrices.shape)
|
||||||
#plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--'))
|
#plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--'))
|
||||||
|
|
||||||
ax = axa[0,0]
|
ax = axa[0,0]
|
||||||
|
@ -182,21 +235,24 @@ ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
|
||||||
ax.plot(
|
ax.plot(
|
||||||
om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-'
|
om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-'
|
||||||
)
|
)
|
||||||
|
|
||||||
|
ax = axa[1,0]
|
||||||
|
ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes)
|
||||||
pdf.savefig(f)
|
pdf.savefig(f)
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
# In[ ]:
|
||||||
|
|
||||||
kdensity = 66
|
#kdensity = 66 #defined from cl arguments
|
||||||
bz_0 = np.array((0,0,0.,))
|
bz_0 = np.array((0,0,0.,))
|
||||||
bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3
|
bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3
|
||||||
bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3
|
bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3
|
||||||
bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3
|
bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3
|
||||||
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity/5)[:,nx]
|
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx]
|
||||||
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx]
|
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx]
|
||||||
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx]
|
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx]
|
||||||
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity/5)[:,nx]
|
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx]
|
||||||
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity/5)[:,nx]
|
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx]
|
||||||
B1 = 2* bz_K1 - bz_K2
|
B1 = 2* bz_K1 - bz_K2
|
||||||
B2 = 2* bz_K2 - bz_K1
|
B2 = 2* bz_K2 - bz_K1
|
||||||
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
||||||
|
@ -216,11 +272,13 @@ omegalist = list()
|
||||||
filecount = 0
|
filecount = 0
|
||||||
for trfile in os.scandir(translations_dir):
|
for trfile in os.scandir(translations_dir):
|
||||||
filecount += 1
|
filecount += 1
|
||||||
|
if (skipfreq and (0 == filecount % skipfreq)):
|
||||||
|
continue
|
||||||
try:
|
try:
|
||||||
npz = np.load(trfile.path, mmap_mode='r')
|
npz = np.load(trfile.path, mmap_mode='r')
|
||||||
k_0 = npz['precalc_params'][()]['k_hexside'] / hexside
|
k_0 = npz['precalc_params'][()]['k_hexside'] / hexside
|
||||||
omega = k_0 * c / math.sqrt(epsilon_b)
|
omega = k_0 * c / math.sqrt(epsilon_b)
|
||||||
if(omega < 2.4e15 or omega > 2.7e15 ):
|
if((minfreq and omega < minfreq) or (maxfreq and omega > maxfreq)):
|
||||||
continue
|
continue
|
||||||
except:
|
except:
|
||||||
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
|
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
|
||||||
|
@ -314,6 +372,12 @@ for trfile in os.scandir(translations_dir):
|
||||||
minsvTElistarr = np.array(minsvTElistlist)
|
minsvTElistarr = np.array(minsvTElistlist)
|
||||||
minsvTMlistarr = np.array(minsvTMlistlist)
|
minsvTMlistarr = np.array(minsvTMlistlist)
|
||||||
omegalist = np.array(omegalist)
|
omegalist = np.array(omegalist)
|
||||||
|
# order to make the scatter plots "nice"
|
||||||
|
omegaorder = np.argsort(omegalist)
|
||||||
|
omegalist = omegalist[omegaorder]
|
||||||
|
minsvTElistarr = minsvTElistarr[omegaorder]
|
||||||
|
minsvTMlistarr = minsvTMlistarr[omegaorder]
|
||||||
|
|
||||||
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr.shape)
|
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr.shape)
|
||||||
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr.shape)
|
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr.shape)
|
||||||
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
||||||
|
@ -385,19 +449,6 @@ ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
|
||||||
f.colorbar(sc)
|
f.colorbar(sc)
|
||||||
|
|
||||||
pdf.savefig(f)
|
pdf.savefig(f)
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
pdf.close()
|
pdf.close()
|
||||||
|
|
||||||
|
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
unitcell_translations
|
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue