Argproc: waves with polarisation; update finiterectlat-scatter.py

Former-commit-id: a24428bd19d90ad6d13ab3cfe4d1c0fc406dc451
This commit is contained in:
Marek Nečada 2020-04-02 18:27:43 +03:00
parent dc503158bf
commit 70d03f75aa
2 changed files with 111 additions and 32 deletions

View File

@ -4,11 +4,8 @@ import math
from qpms.argproc import ArgParser
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX'))
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega', 'planewave'])
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-N", type=int, default="151", help="Number of angles")
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
@ -22,15 +19,11 @@ logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
Nx, Ny = a.size
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_n%g_angles(%g_%g)_Ey_f%geV_L%d_cn%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.kx_lim[0], a.kx_lim[1], a.eV, a.lMax, a.N)
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
import math
from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle
@ -39,6 +32,13 @@ from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
from qpms.symmetries import point_group_info
eh = eV/hbar
pi = math.pi
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_n%g%gπ_θ(%g_%g)π_ψ%gπ_χ%gπ_f%geV_L%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, a.eV, a.lMax, )
logging.info("Default file prefix: %s" % defaultprefix)
dbgmsg_enable(DebugFlags.INTEGRATION)
@ -56,23 +56,24 @@ Tmatrix = ap.tmgen(bspec, ap.omega)
particles= [Particle(orig_xy[i], Tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
sym = FinitePointGroup(point_group_info['D2h'])
ss = ScatteringSystem(particles, sym)
ss, ssw = ScatteringSystem.create(particles, ap.background_emg, omega, sym=sym)
wavenumber = ap.background_epsmu.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
sinalpha_list = np.linspace(a.kx_lim[0],a.kx_lim[1],a.N)
## Plane wave data
a.theta = np.array(a.theta)
k_sph_list = np.stack((np.broadcast_to(wavenumber, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1)
, = math.sin(a.psi), math.cos(a.psi)
, = math.sin(a.chi), math.cos(a.chi)
E_sph = (0., * + 1j**, * + 1j**)
# Plane wave data
E_cart_list = np.empty((a.N,3), dtype=complex)
E_cart_list[:,:] = np.array((0,1,0))[None,:]
k_cart_list = np.empty((a.N,3), dtype=float)
k_cart_list[:,0] = sinalpha_list
k_cart_list[:,1] = 0
k_cart_list[:,2] = np.sqrt(1-sinalpha_list**2)
k_cart_list *= wavenumber
k_cart_list = sph2cart(k_sph_list)
E_cart_list = sph_loccart2cart(E_sph, k_sph_list)
σ_ext_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
σ_scat_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
npoints = a.theta.shape[0]
σ_ext_list_ir = np.empty((npoints, ss.nirreps), dtype=float)
σ_scat_list_ir = np.empty((npoints, ss.nirreps), dtype=float)
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
@ -80,15 +81,15 @@ for iri in range(ss.nirreps):
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
LU = None # to trigger garbage collection before the next call
translation_matrix = None
LU = ss.scatter_solver(wavenumber,iri)
LU = ssw.scatter_solver(iri)
logging.info("LU solver created")
translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
logging.info("auxillary translation matrix created")
for j in range(a.N):
for j in range(npoints):
# the following two could be calculated only once, but probably not a big deal
ã = ss.planewave_full(k_cart=k_cart_list[j], E_cart=E_cart_list[j])
= ss.apply_Tmatrices_full(ã)
= ssw.apply_Tmatrices_full(ã)
Tãi = ss.pack_vector(, iri)
ãi = ss.pack_vector(ã, iri)
@ -97,7 +98,7 @@ for iri in range(ss.nirreps):
σ_scat_list_ir[j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2
if a.save_gradually:
iriout = outfile_tmp + ".%d" % iri
np.savez(iriout, iri=iri, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list,
np.savez(iriout, iri=iri, meta=vars(a), k_sph=k_sph_list, k_cart = k_cart_list, E_cart=E_cart_list, E_sph=np.array(E_sph),
omega=omega, wavenumber=wavenumber, σ_ext_list_ir=σ_ext_list_ir[:,iri], σ_scat_list_ir=σ_scat_list_ir[:,iri])
logging.info("partial results saved to %s"%iriout)
@ -108,7 +109,8 @@ for iri in range(ss.nirreps):
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat,
np.savez(outfile, meta=vars(a), k_sph=k_sph_list, k_cart = k_cart_list, E_cart=E_cart_list, E_sph=np.array(E_sph),
σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat,
σ_ext_ir=σ_ext_list_ir,σ_abs_ir=σ_abs_list_ir,σ_scat_ir=σ_scat_list_ir, omega=omega, wavenumber=wavenumber
)
logging.info("Saved to %s" % outfile)
@ -121,11 +123,12 @@ if a.plot or (a.plot_out is not None):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sinalpha_list, σ_scat*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sinalpha_list, σ_abs*1e12, label='$\sigma_\mathrm{abs}$')
sintheta = np.sin(a.theta)
ax.plot(sintheta, σ_ext*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sintheta, σ_scat*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sintheta, σ_abs*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\alpha$')
ax.set_xlabel('$\sin\\theta$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out

View File

@ -20,8 +20,73 @@ class AppendTupleAction(argparse.Action):
setattr(args, self.dest, list())
getattr(args, self.dest).append(tuple(values))
def float_range(string):
"""Tries to parse a string either as one individual float value
or one of the following patterns:
first:last:increment
first:last|steps
first:last
(The last one is equivalent to first:last|50.)
Returns either float or numpy array.
"""
try:
res = float(string)
return res
except ValueError:
import re
steps = None
match = re.match(r's?([^:]+):([^|]+)\|(.+)', string)
if match:
#print("first:last|steps", match.group(1,2,3))
steps = int(match.group(3))
else:
match = re.match(r's?([^:]+):([^:]+):(.+)', string)
if match:
#print("first:last:increment", match.group(1,2,3))
increment = float(match.group(3))
else:
match = re.match(r's?([^:]+):(.+)', string)
if match:
#print("first:last", match.group(1,2))
steps = 50
else:
argparse.ArgumentTypeError('Invalid float/sequence format: "%s"' % string)
first = float(match.group(1))
last = float(match.group(2))
import numpy as np
if steps is not None:
return np.linspace(first, last, num=steps)
else:
return np.arange(first, last, increment)
class ArgParser:
''' Common argument parsing engine for QPMS python CLI scripts. '''
def __add_planewave_argparse_group(ap):
pwgrp = ap.add_argument_group('Incident wave specification', """
Incident wave direction is given in terms of ISO polar and azimuthal angles θ, φ,
which translate into cartesian coordinates as r̂ = (x, y, z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).
Wave polarisation is given in terms of parameters ψ, χ, where ψ is the angle between a polarisation
ellipse axis and meridian tangent θ̂, and tg χ determines axes ratio;
the electric field in the origin is then
E = cos(χ) (cos(ψ) θ̂ + sin(ψ) φ̂) + i sin(χ) (sin(ψ) θ̂ + cos(ψ) φ̂).
All the angles are given as multiples of π/2.
""" # TODO EXAMPLES
)
pwgrp.add_argument("", "--phi", type=float, default=0,
help='Incident wave asimuth in multiples of π/2.')
pwgrp.add_argument("", "--theta", type=float_range, default=0,
help='Incident wave polar angle in multiples of π/2. This might be a sequence in format FIRST:LAST:INCREMENT.')
pwgrp.add_argument("", "--psi", type=float, default=0,
help='Angle between polarisation ellipse axis and meridian tangent θ̂ in multiples of π/2.')
pwgrp.add_argument("", "--chi", type=float, default=0,
help='Polarisation parameter χ in multiples of π/2. 0 for linear, 0.5 for circular pol.')
atomic_arguments = {
'rectlattice2d_periods': lambda ap: ap.add_argument("-p", "--period", type=float, nargs='+', required=True, help='square/rectangular lattice periods', metavar=('px','[py]')),
'rectlattice2d_counts': lambda ap: ap.add_argument("--size", type=int, nargs=2, required=True, help='rectangular array size (particle column, row count)', metavar=('NCOLS', 'NROWS')),
@ -40,6 +105,7 @@ class ArgParser:
'plot_out': lambda ap: ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)"),
'plot_do': lambda ap: ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path"),
'lattice2d_basis': lambda ap: ap.add_argument("-b", "--basis-vector", action=AppendTupleAction, help="basis vector in xy-cartesian coordinates (two required)", dest='basis_vectors', metavar=('X', 'Y')),
'planewave_pol_angles': __add_planewave_argparse_group,
}
feature_sets_available = { # name : (description, dependencies, atoms not in other dependencies, methods called after parsing)
@ -51,6 +117,7 @@ class ArgParser:
'lattice2d': ("Specification of a generic 2d lattice (spanned by the x,y axes)", (), ('lattice2d_basis',), ('_eval_lattice2d',)),
'rectlattice2d': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", (), ('rectlattice2d_periods',), ('_eval_rectlattice2d',)),
'rectlattice2d_finite': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", ('rectlattice2d',), ('rectlattice2d_counts',), ()),
'planewave': ("Specification of a normalised plane wave (typically used for scattering) with a full polarisation state", (), ('planewave_pol_angles',), ("_process_planewave_angles",)),
}
@ -157,3 +224,12 @@ class ArgParser:
self.reciprocal_basis1 = np.linalg.inv(self.direct_basis)
self.reciprocal_basis2pi = 2 * np.pi * self.reciprocal_basis1
def _process_planewave_angles(self): #feature: planewave
import math
pi2 = math.pi/2
a = self.args
a.chi = a.chi * pi2
a.psi = a.psi * pi2
a.theta = a.theta * pi2
a.phi = a.phi * pi2