Expressing VSWF in terms of SSWF
This commit is contained in:
parent
10d3beca1c
commit
736adb6974
|
@ -0,0 +1,33 @@
|
|||
VSWF expansions in terms of SSWF
|
||||
================================
|
||||
|
||||
From
|
||||
\cite necada_multiple-scattering_2021, eq. (2.19)
|
||||
\f[
|
||||
\wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) =
|
||||
\sum_{\tau'l'm'} \tropSr{\kappa(\vect r_2 - \vect r_1)}_{\tau l m;\tau'l'm} \wfkcreg_{\tau'l'm'}(\vect r -\vect r_2),
|
||||
\qquad |\vect r -\vect r_2| < |\vect r_1 - \vect r_2|,
|
||||
\f]
|
||||
setting \f$ \vect r = \vect r_2\f$ and considering that
|
||||
\f$ \wfkcreg_{\tau'l'm'}(\vect 0) \ne \vect 0 \f$ only for electric dipole waves (\f$ \tau = \mathrm{E}, l=1 \f$),
|
||||
we have
|
||||
\f[
|
||||
\wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) =
|
||||
\sum_{m'} \tropSr{\kappa(\vect r - \vect r_1)}_{\tau l m;\mathrm{E}1m} \wfkcreg_{\mathrm{E}1m'}(\vect 0),
|
||||
\qquad \vect r \ne \vect r_1 .
|
||||
\f]
|
||||
Combining this with
|
||||
\cite necada_multiple-scattering_2021, eq. (2.25)
|
||||
\f[
|
||||
\tropSr{\vect d}_{\tau l m; \tau' l' m'} = \sum_{\lambda =|l-l'|+|\tau-\tau'|}^{l+l'}
|
||||
C^{\lambda}_{\tau l m;\tau' l'm'} \underbrace{ \spharm{\lambda}{m-m'}(\uvec d) h_\lambda^{(1)}(d)}_{\sswfout_\lambda^{m-m'}(\vect d)},
|
||||
\f]
|
||||
we get
|
||||
\f[
|
||||
\wfkcout_{\tau lm}(\vect d) = \sum_{m'=-1}^1 \wfkcreg_{\mathrm{E}1m'}(\vect 0)
|
||||
\sum_{\lambda=l-1+|\tau-\tau'|}^{l+1}
|
||||
C^\lambda_{\tau l m;\mathrm{E}1m'} \sswfout_\lambda^{m-m'}(\vect d).
|
||||
\f]
|
||||
Note that the VSWF components in this expression are given in global "cartesian" basis,
|
||||
*not* the local orthonormal basis derived from spherical coordinates.
|
||||
(This is mostly desirable, because in lattices we need to work with flat coordinates anyway.)
|
|
@ -31,8 +31,15 @@ MathJax.Hub.Config({
|
|||
spharm: ["{{Y_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Spherical harmonics
|
||||
spharmR: ["{{Y_{\\mathrm{#1}}}_{\\mathrm{#1}{#2}{#3}}", 4, ""], // Spherical harmonics
|
||||
csphase: "\\mathsf{C_{CS}}", // Condon-Shortley phase
|
||||
tropSrr: ["{{S^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular
|
||||
tropRrr: ["{{R^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular
|
||||
tropS: "{\\mathcal{S}}", // Translation operator singular
|
||||
tropR: "{\\mathcal{R}}", // Translation operator regular
|
||||
tropSr: ["{{\\mathcal{S}^\\mathrm{#1}}\\pr{{#2}}}", 2, ""], // Translation operator singular
|
||||
tropRr: ["{{\\mathcal{R}^\\mathrm{#1}}\\pr{{#2}}}", 2, ""], // Translation operator regular
|
||||
tropSrr: ["{{\\mathcal{S}^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular
|
||||
tropRrr: ["{{\\mathcal{R}^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular
|
||||
sswfout: "{\\psi}", // outgoing SSWF
|
||||
sswfreg: "{\\phi}", // regular SSWF
|
||||
|
||||
|
||||
// Kristensson's VSWFs, complex version (2014 notes)
|
||||
wfkc: "{\\vect{y}}", // any wave
|
||||
|
|
Loading…
Reference in New Issue