Symmetries for infinite systems, sloppy version
Former-commit-id: 2bda4d6e361b274be9bf20beb1ae8a2e4e2c63ce
This commit is contained in:
parent
a659e5b1fb
commit
737b02e6da
lepaper
|
@ -758,6 +758,11 @@ The text about symmetries is pretty dense.
|
||||||
Make it more explanatory and human-readable.
|
Make it more explanatory and human-readable.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Check whether everything written is correct also for non-symmetric space
|
||||||
|
groups.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset CommandInset include
|
\begin_inset CommandInset include
|
||||||
LatexCommand include
|
LatexCommand include
|
||||||
|
|
|
@ -1042,6 +1042,171 @@ Kvantifikovat!
|
||||||
Periodic systems
|
Periodic systems
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
For periodic systems, we can in similar manner also block-diagonalise the
|
||||||
|
|
||||||
|
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
from the left hand side of eqs.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Multiple-scattering problem unit cell block form"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:lattice mode equation"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Hovewer, in this case,
|
||||||
|
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is in general not invariant under the whole point group symmetry subgroup
|
||||||
|
of the system geometry due to the
|
||||||
|
\begin_inset Formula $\vect k$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
dependence.
|
||||||
|
In other words, only those point symmetries that the
|
||||||
|
\begin_inset Formula $e^{i\vect k\cdot\vect r}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
modulation does not break are preserved, and no preservation of point symmetrie
|
||||||
|
s happens unless
|
||||||
|
\begin_inset Formula $\vect k$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
lies somewhere in the high-symmetry parts of the Brillouin zone.
|
||||||
|
However, the high-symmetry points are usually the ones of the highest physical
|
||||||
|
interest, for it is where the band edges
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
or
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
dirac points
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are typically located.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The transformation to the symmetry adapted basis
|
||||||
|
\begin_inset Formula $U$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is constructed in a similar way as in the finite case, but because we do
|
||||||
|
not work with all the (infinite number of) scatterers but only with one
|
||||||
|
unit cell, additional phase factors
|
||||||
|
\begin_inset Formula $e^{i\vect k\cdot\vect r_{p}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
appear in the per-unit-cell group action
|
||||||
|
\begin_inset Formula $J(g)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
This is illustrated in Fig.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "Phase factor illustration"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\begin_inset Float figure
|
||||||
|
placement document
|
||||||
|
alignment document
|
||||||
|
wide false
|
||||||
|
sideways false
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\begin_inset Caption Standard
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "Phase factor illustration"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
More rigorous analysis can be found e.g.
|
||||||
|
in
|
||||||
|
\lang english
|
||||||
|
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "chapters 10–11"
|
||||||
|
key "dresselhaus_group_2008"
|
||||||
|
literal "true"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
In the group-theoretical terminology, blablabla little groups blabla bla...
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
||||||
\lang english
|
\lang english
|
||||||
|
|
Loading…
Reference in New Issue