From 74655c0210c2018f66ff49bc58710eb95cf91a86 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Thu, 18 Jul 2019 22:50:01 +0300 Subject: [PATCH] WIP finite systems + copypasta from hexlaser SM Former-commit-id: 7fa2ae8308b4aa62fdb0986ac0ed669fad29d2a1 --- lepaper/arrayscat.lyx | 91 +++++++- lepaper/finite-old.lyx | 378 +++++++++++++++++++++++++++++++ lepaper/finite.lyx | 152 ++++++++++++- lepaper/infinite-old.lyx | 476 +++++++++++++++++++++++++++++++++++++++ 4 files changed, 1088 insertions(+), 9 deletions(-) create mode 100644 lepaper/finite-old.lyx create mode 100644 lepaper/infinite-old.lyx diff --git a/lepaper/arrayscat.lyx b/lepaper/arrayscat.lyx index bf9767a..0806f93 100644 --- a/lepaper/arrayscat.lyx +++ b/lepaper/arrayscat.lyx @@ -41,11 +41,11 @@ \papersize default \use_geometry false \use_package amsmath 2 -\use_package amssymb 1 +\use_package amssymb 2 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 -\use_package mathtools 1 +\use_package mathtools 2 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 @@ -158,7 +158,12 @@ \begin_inset FormulaMacro -\newcommand{\ush}[2]{Y_{#1,#2}} +\newcommand{\spharm}[2]{Y_{#1,#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{\spharm{#1}{#2}} \end_inset @@ -232,6 +237,66 @@ \end_inset +\begin_inset FormulaMacro +\newcommand{\transop}{S} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vswfr}[3]{\vect{\vect v}_{#1#2#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vswfs}[3]{\vect{\vect u}_{#1#2#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vspharm}[3]{\vect A_{#1#2#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uvec}[1]{\vect{\hat{#1}}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffs}{f} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffsi}[3]{\coeffs_{#1#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffr}{a} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffri}[3]{\coeffr_{#1#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffrip}[4]{\coeffr_{#1}^{#2,#3,#4}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffripext}[4]{\coeffr_{\mathrm{ext}#1}^{#2,#3,#4}} +\end_inset + + \end_layout \begin_layout Title @@ -440,6 +505,16 @@ filename "intro.lyx" \end_inset +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand include +filename "finite-old.lyx" + +\end_inset + + \end_layout \begin_layout Standard @@ -460,6 +535,16 @@ filename "infinite.lyx" \end_inset +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand include +filename "infinite-old.lyx" + +\end_inset + + \end_layout \begin_layout Standard diff --git a/lepaper/finite-old.lyx b/lepaper/finite-old.lyx new file mode 100644 index 0000000..84eb30e --- /dev/null +++ b/lepaper/finite-old.lyx @@ -0,0 +1,378 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language finnish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman TeX Gyre Pagella +\font_sans default +\font_typewriter default +\font_math auto +\font_default_family default +\use_non_tex_fonts true +\font_sc false +\font_osf true +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format pdf4 +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref true +\pdf_title "Sähköpajan päiväkirja" +\pdf_author "Marek Nečada" +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language swedish +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Subsection + +\lang english +The multiple-scattering problem +\begin_inset CommandInset label +LatexCommand label +name "sub:The-multiple-scattering-problem" + +\end_inset + + +\end_layout + +\begin_layout Standard + +\lang english +In the +\begin_inset Formula $T$ +\end_inset + +-matrix approach, scattering properties of single nanoparticles in a homogeneous + medium are first computed in terms of vector sperical wavefunctions (VSWFs)—the + field incident onto the +\begin_inset Formula $n$ +\end_inset + +-th nanoparticle from external sources can be expanded as +\begin_inset Formula +\begin{equation} +\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\vswfr lmt\left(\vect r_{n}\right)\label{eq:E_inc} +\end{equation} + +\end_inset + +where +\begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$ +\end_inset + +, +\begin_inset Formula $\vect R_{n}$ +\end_inset + + being the position of the centre of +\begin_inset Formula $n$ +\end_inset + +-th nanoparticle and +\begin_inset Formula $\vswfr lmt$ +\end_inset + + are the regular VSWFs which can be expressed in terms of regular spherical + Bessel functions of +\begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$ +\end_inset + + and spherical harmonics +\begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$ +\end_inset + +; the expressions, together with a proof that the VSWFs span all the solutions + of vector Helmholtz equation around the particle, justifying the expansion, + can be found e.g. + in +\begin_inset CommandInset citation +LatexCommand cite +after "chapter 7" +key "kristensson_scattering_2016" + +\end_inset + + (care must be taken because of varying normalisation and phase conventions). + On the other hand, the field scattered by the particle can be (outside + the particle's circumscribing sphere) expanded in terms of singular VSWFs + +\begin_inset Formula $\vswfs lmt$ +\end_inset + + which differ from the regular ones by regular spherical Bessel functions + being replaced with spherical Hankel functions +\begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$ +\end_inset + +, +\begin_inset Formula +\begin{equation} +\vect E_{n}^{\mathrm{scat}}\left(\vect r\right)=\sum_{l,m,t}\coeffsip nlmt\vswfs lmt\left(\vect r_{n}\right).\label{eq:E_scat} +\end{equation} + +\end_inset + +The expansion coefficients +\begin_inset Formula $\coeffsip nlmt$ +\end_inset + +, +\begin_inset Formula $t=\mathrm{E},\mathrm{M}$ +\end_inset + + are related to the electric and magnetic multipole polarization amplitudes + of the nanoparticle. +\end_layout + +\begin_layout Standard + +\lang english +At a given frequency, assuming the system is linear, the relation between + the expansion coefficients in the VSWF bases is given by the so-called + +\begin_inset Formula $T$ +\end_inset + +-matrix, +\begin_inset Formula +\begin{equation} +\coeffsip nlmt=\sum_{l',m',t'}T_{n}^{lmt;l'm't'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition} +\end{equation} + +\end_inset + +The +\begin_inset Formula $T$ +\end_inset + +-matrix is given by the shape and composition of the particle and fully + describes its scattering properties. + In theory it is infinite-dimensional, but in practice (at least for subwaveleng +th nanoparticles) its elements drop very quickly to negligible values with + growing degree indices +\begin_inset Formula $l,l'$ +\end_inset + +, enabling to take into account only the elements up to some finite degree, + +\begin_inset Formula $l,l'\le l_{\mathrm{max}}$ +\end_inset + +. + The +\begin_inset Formula $T$ +\end_inset + +-matrix can be calculated numerically using various methods; here we used + the scuff-tmatrix tool from the SCUFF-EM suite +\begin_inset CommandInset citation +LatexCommand cite +key "SCUFF2,reid_efficient_2015" + +\end_inset + +, which implements the boundary element method (BEM). +\end_layout + +\begin_layout Standard + +\lang english +The singular VSWFs originating at +\begin_inset Formula $\vect R_{n}$ +\end_inset + + can be then re-expanded around another origin (nanoparticle location) +\begin_inset Formula $\vect R_{n'}$ +\end_inset + + in terms of regular VSWFs, +\begin_inset Formula +\begin{equation} +\begin{split}\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n'}-\vect R_{n}\right)\vswfr{l'}{m'}{t'}\left(\vect r_{n'}\right),\\ +\left|\vect r_{n'}\right|<\left|\vect R_{n'}-\vect R_{n}\right|. +\end{split} +\label{eq:translation op def} +\end{equation} + +\end_inset + +Analytical expressions for the translation operator +\begin_inset Formula $\transop^{lmt;l'm't'}\left(\vect R_{n'}-\vect R_{n}\right)$ +\end_inset + + can be found in +\begin_inset CommandInset citation +LatexCommand cite +key "xu_efficient_1998" + +\end_inset + +. +\end_layout + +\begin_layout Standard + +\lang english +If we write the field incident onto the +\begin_inset Formula $n$ +\end_inset + +-th nanoparticle as the sum of fields scattered from all the other nanoparticles + and an external field +\begin_inset Formula $\vect E_{0}$ +\end_inset + + (which we also expand around each nanoparticle, +\begin_inset Formula $\vect E_{0}\left(\vect r\right)=\sum_{l,m,t}\coeffripext nlmt\vswfr lmt\left(\vect r_{n}\right)$ +\end_inset + +), +\begin_inset Formula +\[ +\vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right) +\] + +\end_inset + +and use eqs. + ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:E_inc" + +\end_inset + +)–( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:translation op def" + +\end_inset + +), we obtain a set of linear equations for the electromagnetic response + (multiple scattering) of the whole set of nanoparticles, +\begin_inset Formula +\begin{equation} +\begin{split}\coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\\ +\times\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}. +\end{split} +\label{eq:multiplescattering element-wise} +\end{equation} + +\end_inset + +It is practical to get rid of the VSWF indices, rewriting ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:multiplescattering element-wise" + +\end_inset + +) in a per-particle matrix form +\begin_inset Formula +\begin{equation} +\coeffr_{n}=\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}T_{n'}p_{n'}\label{eq:multiple scattering per particle p} +\end{equation} + +\end_inset + +and to reformulate the problem using ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:Tmatrix definition" + +\end_inset + +) in terms of the +\begin_inset Formula $\coeffs$ +\end_inset + +-coefficients which describe the multipole excitations of the particles + +\begin_inset Formula +\begin{equation} +\coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a} +\end{equation} + +\end_inset + +Knowing +\begin_inset Formula $T_{n},S_{n,n'},\coeffr_{\mathrm{ext}(n)}$ +\end_inset + +, the nanoparticle excitations +\begin_inset Formula $a_{n}$ +\end_inset + + can be solved by standard linear algebra methods. + The total scattered field anywhere outside the particles' circumscribing + spheres is then obtained by summing the contributions ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:E_scat" + +\end_inset + +) from all particles. +\end_layout + +\end_body +\end_document diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index c03ae8f..e7f7729 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -166,6 +166,10 @@ ity and magnetic permeability \begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$ +\end_inset + + depending only on (angular) frequency +\begin_inset Formula $\omega$ \end_inset , and that the whole system is linear, i.e. @@ -176,7 +180,7 @@ ity \end_inset must satisfy the homogeneous vector Helmholtz equation -\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0$ +\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0$ \end_inset @@ -193,16 +197,44 @@ todo define \end_inset - with -\begin_inset Formula $k=TODO$ + with wavenumber +\begin_inset Formula $k=\omega\sqrt{\mu\epsilon}/c_{0}$ \end_inset - [TODO REF Jackson?]. - Its solutions (TODO under which conditions? What vector space do the SVWFs +, and transversality condition +\begin_inset Formula $\nabla\cdot\vect{\Psi}\left(\vect r,\omega\right)=0$ +\end_inset + + +\begin_inset CommandInset citation +LatexCommand cite +key "jackson_classical_1998" + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + [TODO more specific REF Jackson?] +\end_layout + +\end_inset + +. + +\lang english + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Its solutions (TODO under which conditions? What vector space do the SVWFs actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson) \end_layout -\begin_layout Standard +\begin_layout Plain Layout \lang english Throughout this text, we will use the same normalisation conventions as @@ -216,12 +248,120 @@ key "kristensson_scattering_2016" . \end_layout +\end_inset + + +\end_layout + \begin_layout Subsubsection \lang english Spherical waves \end_layout +\begin_layout Standard +Inside a ball +\begin_inset Formula $B_{R}\left(\vect{r'}\right)\subset\medium$ +\end_inset + + with radius +\begin_inset Formula $R$ +\end_inset + + centered at +\begin_inset Formula $\vect{r'}$ +\end_inset + +, the transversal solutions of the vector Helmholtz equation can be expressed + in the basis of the regular transversal +\emph on +vector spherical wavefunctions +\emph default + (VSWFs) +\begin_inset Formula $\vswfr{\tau}lm\left(k\left(\vect r-\vect{r'}\right)\right)$ +\end_inset + +, which are found by separation of variables in spherical coordinates. + There is a large variety of VSWF normalisation and phase conventions in + the literature (and existing software), which can lead to great confusion + using them. + Throughout this text, we use the following convention, adopted from [Kristensso +n 2014]: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray} +\vswfr 1lm\left(k\vect r\right) & = & j_{l}\left(kr\right)\vspharm 1lm\left(\uvec r\right),\nonumber \\ +\vswfr 2lm\left(k\vect r\right) & = & \frac{1}{kr}\frac{\ud\left(kr\, j_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vspharm 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vspharm 3lm\left(\uvec r\right),\label{eq:regular vswf}\\ + & & \qquad l=1,2,\dots;\, m=-l,-l+1,\dots,l;\nonumber +\end{eqnarray} + +\end_inset + +where we separated the position variable into its magnitude +\begin_inset Formula $r$ +\end_inset + + and a unit vector +\begin_inset Formula $\uvec r$ +\end_inset + +, +\begin_inset Formula $\vect r=r\uvec r$ +\end_inset + +, the +\emph on +vector spherical harmonics +\emph default + +\begin_inset Formula $\vspharm{\sigma}lm$ +\end_inset + + are defined as +\begin_inset Formula +\begin{eqnarray} +\vspharm 1lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\nabla\spharm lm\left(\uvec r\right)\times\vect r,\nonumber \\ +\vspharm 2lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\spharm lm\left(\uvec r\right),\label{eq:vspharm}\\ +\vspharm 2lm\left(\uvec r\right) & = & \uvec r\spharm lm\left(\uvec r\right),\nonumber +\end{eqnarray} + +\end_inset + +and for the scalar spherical harmonics +\begin_inset Formula $\spharm lm$ +\end_inset + + we use the convention from [REF DLMF 14.30.1], +\begin_inset Formula +\begin{equation} +\spharm lm\left(\uvec r\right)=\spharm lm\left(\theta,\phi\right)=\left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\mathsf{P}_{l}^{m}\left(\cos\theta\right),\label{eq:spharm} +\end{equation} + +\end_inset + +where the Condon-Shortley phase factor +\begin_inset Formula $\left(-1\right)^{m}$ +\end_inset + + is already included in the definition of Ferrers function +\begin_inset Formula $\mathsf{P}_{l}^{m}\left(\cos\theta\right)$ +\end_inset + + [as in DLMF 14]. + The main reason for this choice of VSWF +\emph on +normalisation +\emph default + is that it leads to simple formulae for power transport and scattering + cross sections without additional +\begin_inset Formula $l,m$ +\end_inset + +-dependent factors, see below. +\end_layout + \begin_layout Standard \lang english diff --git a/lepaper/infinite-old.lyx b/lepaper/infinite-old.lyx new file mode 100644 index 0000000..ffefe93 --- /dev/null +++ b/lepaper/infinite-old.lyx @@ -0,0 +1,476 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\use_default_options false +\maintain_unincluded_children false +\language english +\language_package none +\inputencoding auto +\fontencoding default +\font_roman default +\font_sans default +\font_typewriter default +\font_math auto +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 0 +\use_package cancel 0 +\use_package esint 1 +\use_package mathdots 0 +\use_package mathtools 0 +\use_package mhchem 0 +\use_package stackrel 0 +\use_package stmaryrd 0 +\use_package undertilde 0 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Subsection +Periodic systems and mode analysis +\begin_inset CommandInset label +LatexCommand label +name "sub:Periodic-systems" + +\end_inset + + +\end_layout + +\begin_layout Standard +In an infinite periodic array of nanoparticles, the excitations of the nanoparti +cles take the quasiperiodic Bloch-wave form +\begin_inset Formula +\[ +\coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu} +\] + +\end_inset + +(assuming the incident external field has the same periodicity, +\begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$ +\end_inset + +) where +\begin_inset Formula $\nu$ +\end_inset + + is the index of a particle inside one unit cell and +\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$ +\end_inset + + are the lattice vectors corresponding to the sites (labeled by multiindices + +\begin_inset Formula $i,i'$ +\end_inset + +) of a Bravais lattice +\begin_inset Formula $\Lambda$ +\end_inset + +. + The multiple-scattering problem ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:multiple scattering per particle a" + +\end_inset + +) then takes the form +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)} +\] + +\end_inset + +or, labeling +\begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$ +\end_inset + + and using the quasiperiodicity, +\begin_inset Formula +\begin{equation} +\sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic} +\end{equation} + +\end_inset + +which reduces the linear problem ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:multiple scattering per particle a" + +\end_inset + +) to interactions between particles inside single unit cell. + A problematic part is the evaluation of the translation operator lattice + sums +\begin_inset Formula $W_{\nu\nu'}$ +\end_inset + +; this is performed using exponentially convergent Ewald-type representations + +\begin_inset CommandInset citation +LatexCommand cite +key "linton_lattice_2010" + +\end_inset + +. +\end_layout + +\begin_layout Standard +In an infinite periodic system, a nonlossy mode supports itself without + external driving, i.e. + such mode is described by excitation coefficients +\begin_inset Formula $a_{\nu}$ +\end_inset + + that satisfy eq. + ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:multiple scattering per particle a periodic" + +\end_inset + +) with zero right-hand side. + That can happen if the block matrix +\begin_inset Formula +\begin{equation} +M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition} +\end{equation} + +\end_inset + +from the left hand side of ( +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:multiple scattering per particle a periodic" + +\end_inset + +) is singular (here we explicitly note the +\begin_inset Formula $\omega,\vect k$ +\end_inset + + depence). +\end_layout + +\begin_layout Standard +For lossy nanoparticles, however, perfect propagating modes will not exist + and +\begin_inset Formula $M\left(\omega,\vect k\right)$ +\end_inset + + will never be perfectly singular. + Therefore in practice, we get the bands by scanning over +\begin_inset Formula $\omega,\vect k$ +\end_inset + + to search for +\begin_inset Formula $M\left(\omega,\vect k\right)$ +\end_inset + + which have an +\begin_inset Quotes erd +\end_inset + +almost zero +\begin_inset Quotes erd +\end_inset + + singular value. +\end_layout + +\begin_layout Section +\begin_inset ERT +status collapsed + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + +Symmetries +\begin_inset ERT +status collapsed + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset label +LatexCommand label +name "sm:symmetries" + +\end_inset + + +\end_layout + +\begin_layout Standard +A general overview of utilizing group theory to find lattice modes at high-symme +try points of the Brillouin zone can be found e.g. + in +\begin_inset CommandInset citation +LatexCommand cite +after "chapters 10–11" +key "dresselhaus_group_2008" + +\end_inset + +; here we use the same notation. +\end_layout + +\begin_layout Standard +We analyse the symmetries of the system in the same VSWF representation + as used in the +\begin_inset Formula $T$ +\end_inset + +-matrix formalism introduced above. + We are interested in the modes at the +\begin_inset Formula $\Kp$ +\end_inset + +-point of the hexagonal lattice, which has the +\begin_inset Formula $D_{3h}$ +\end_inset + + point symmetry. + The six irreducible representations (irreps) of the +\begin_inset Formula $D_{3h}$ +\end_inset + + group are known and are available in the literature in their explicit forms. + In order to find and classify the modes, we need to find a decomposition + of the lattice mode representation +\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$ +\end_inset + + into the irreps of +\begin_inset Formula $D_{3h}$ +\end_inset + +. + The equivalence representation +\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$ +\end_inset + + is the +\begin_inset Formula $E'$ +\end_inset + + representation as can be deduced from +\begin_inset CommandInset citation +LatexCommand cite +after "eq. (11.19)" +key "dresselhaus_group_2008" + +\end_inset + +, eq. + (11.19) and the character table for +\begin_inset Formula $D_{3h}$ +\end_inset + +. + +\begin_inset Formula $\Gamma_{\mathrm{vec.}}$ +\end_inset + + operates on a space spanned by the VSWFs around each nanoparticle in the + unit cell (the effects of point group operations on VSWFs are described + in +\begin_inset CommandInset citation +LatexCommand cite +key "schulz_point-group_1999" + +\end_inset + +). + This space can be then decomposed into invariant subspaces of the +\begin_inset Formula $D_{3h}$ +\end_inset + + using the projectors +\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$ +\end_inset + + defined by +\begin_inset CommandInset citation +LatexCommand cite +after "eq. (4.28)" +key "dresselhaus_group_2008" + +\end_inset + +. + This way, we obtain a symmetry adapted basis +\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $ +\end_inset + + as linear combinations of VSWFs +\begin_inset Formula $\vswfs lm{p,t}$ +\end_inset + + around the constituting nanoparticles (labeled +\begin_inset Formula $p$ +\end_inset + +), +\begin_inset Formula +\[ +\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t}, +\] + +\end_inset + +where +\begin_inset Formula $\Gamma$ +\end_inset + + stands for one of the six different irreps of +\begin_inset Formula $D_{3h}$ +\end_inset + +, +\begin_inset Formula $r$ +\end_inset + + labels the different realisations of the same irrep, and the last index + +\begin_inset Formula $i$ +\end_inset + + going from 1 to +\begin_inset Formula $d_{\Gamma}$ +\end_inset + + (the dimensionality of +\begin_inset Formula $\Gamma$ +\end_inset + +) labels the different partners of the same given irrep. + The number of how many times is each irrep contained in +\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$ +\end_inset + + (i.e. + the range of index +\begin_inset Formula $r$ +\end_inset + + for given +\begin_inset Formula $\Gamma$ +\end_inset + +) depends on the multipole degree cutoff +\begin_inset Formula $l_{\mathrm{max}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Each mode at the +\begin_inset Formula $\Kp$ +\end_inset + +-point shall lie in the irreducible spaces of only one of the six possible + irreps and it can be shown via +\begin_inset CommandInset citation +LatexCommand cite +after "eq. (2.51)" +key "dresselhaus_group_2008" + +\end_inset + + that, at the +\begin_inset Formula $\Kp$ +\end_inset + +-point, the matrix +\begin_inset Formula $M\left(\omega,\vect k\right)$ +\end_inset + + defined above takes a block-diagonal form in the symmetry-adapted basis, + +\begin_inset Formula +\[ +M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}. +\] + +\end_inset + +This enables us to decompose the matrix according to the irreps and to solve + the singular value problem in each irrep separately, as done in Fig. + +\begin_inset CommandInset ref +LatexCommand ref +reference "smfig:dispersions" + +\end_inset + +(a). +\end_layout + +\end_body +\end_document