Expressions for translation operators (to be checked)

Former-commit-id: f19217f0f3f66a79d724840f633731f44bfd755f
This commit is contained in:
Marek Nečada 2019-07-31 11:43:24 +03:00
parent dba0a26877
commit 76abecce48
2 changed files with 43 additions and 16 deletions

View File

@ -713,7 +713,7 @@ Abstract.
\end_layout
\begin_layout Itemize
Translation operators: explicit expression, also in sph.
Translation operators: rewrite in sph.
harm.
convention independent form.
\end_layout

View File

@ -290,8 +290,8 @@ outgoing
, respectively, defined as follows:
\begin_inset Formula
\begin{align*}
\vswfrtlm1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh1lm\left(\uvec r\right),\\
\vswfrtlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh3lm\left(\uvec r\right),
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
\end{align*}
\end_inset
@ -299,8 +299,8 @@ outgoing
\begin_inset Formula
\begin{align*}
\vswfouttlm1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh1lm\left(\uvec r\right),\\
\vswfouttlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh3lm\left(\uvec r\right),\\
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
\end{align*}
@ -326,9 +326,9 @@ vector spherical harmonics
\begin_inset Formula
\begin{align*}
\vsh1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
\vsh2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
\vsh3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
\end{align*}
\end_inset
@ -452,7 +452,7 @@ noprefix "false"
\end_inset
inside a ball
\begin_inset Formula $\openball0{R^{>}}$
\begin_inset Formula $\openball 0{R^{>}}$
\end_inset
with radius
@ -470,7 +470,7 @@ noprefix "false"
\end_inset
to have a complete basis of the solutions in the volume
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
.
@ -496,7 +496,7 @@ The single-particle scattering problem at frequency
\end_inset
and let the whole volume
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
be filled with a homogeneous isotropic medium with wave number
@ -532,7 +532,7 @@ If there was no scatterer and
\end_inset
due to sources outside
\begin_inset Formula $\openball0R$
\begin_inset Formula $\openball 0R$
\end_inset
would remain.
@ -793,7 +793,7 @@ literal "true"
.
Let the field in
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
have expansion as in
@ -812,7 +812,7 @@ noprefix "false"
\end_inset
to
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
via by electromagnetic radiation is
@ -1535,10 +1535,37 @@ outside.
\begin_layout Standard
In our convention, the regular translation operator can be expressed explicitly
as
as (TODO CHECK CAREFULLY FOR POSSIBLE
\begin_inset Formula $(-1)^{m'}$
\end_inset
AND SIMILAR FACTORS AND REWRITE IN TERMS OF SPHERICAL HARMONICS)
\begin_inset Note Note
status open
\begin_layout Plain Layout
Teďka jsou tam zkopírovány výrazy pro C a D z Kristenssona, chybějí fase
\end_layout
\end_inset
\begin_inset Formula
\begin{multline}
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}.\label{eq:translation operator}
\end{multline}
\end_inset